Abstract:
A combustor for use in a turbine engine that includes an inner combustion liner and an outer combustion liner. An interior is defined between the inner combustion liner and the outer combustion liner, and the interior includes a cavity portion and a main portion extending radially inward from the cavity portion. The cavity portion includes a flow inlet and the main portion includes a flow outlet. A plurality of film cooling holes are formed in at least one of the inner combustion liner and the outer combustion liner. The plurality of film cooling holes are configured such that cooling airflow discharged therefrom flows helically relative to a centerline of the turbine engine and towards the flow outlet.
Abstract:
A turbine engine includes at least one compressor configured to increase pressure of a fluid flow and a primary combustor coupled in flow communication with the at least one compressor. The primary combustor is configured to receive pressurized fluid flow from the at least one compressor. The primary combustor includes a housing defining at least one combustion chamber. The primary combustor is configured for a rotating detonation process to occur within said at least one combustion chamber. The turbine engine also includes at least one supplemental combustor coupled in flow communication with the primary combustor. The at least one supplemental combustor is configured to receive combustion products and perform a combustion operation. The turbine engine further includes a turbine assembly coupled in flow communication with the at least one supplemental combustor. The turbine assembly is configured to receive combustion products from the at least one supplemental combustor.
Abstract:
A turbine system and method of operating is provided. The system includes a compressor configured to generate a compressed low-oxygen air stream and a combustor configured to receive the compressed low-oxygen air stream and to combust a fuel stream to generate a post combustion gas stream. The turbine system also includes a turbine for receiving the post combustion gas stream to generate a low-NOx exhaust gas stream, a heat recovery system configured to receive the low-NOx exhaust gas stream and generate a cooled air stream and an auxiliary compressor configured to generate an oxygen and water vapor deficient cooled and compressed air stream. A portion of the oxygen and water vapor deficient cooled and compressed air stream is directed to the combustor to generate an Oxygen and H2O deficient film on exposed portions of the combustor, and another portion is directed to the turbine to provide a cooling flow.
Abstract:
A combustor assembly for use in a gas turbine engine is provided. The combustor assembly includes a dome assembly, a fuel nozzle coupled to the dome assembly, and a cowl assembly. The cowl assembly includes a radially inner cowl coupled to the dome assembly, and a radially outer cowl including a first cowl member and a second cowl member each positioned about the fuel nozzle. The first and second cowl members substantially align to define a substantially continuous flow path configured to direct a flow of air about the dome assembly.
Abstract:
A propulsion system includes at least one rotating detonation actuator comprising: a flow path extending from an inlet end to an outlet end; an inner wall defining a radially inner boundary of the flow path; an outer wall defining a radially outer boundary of the flow path; and at least one aircraft wing. The rotating detonation actuator is disposed in the aircraft wing. At least one rotating detonation wave travels through the flow path from the inlet end to the outlet end.
Abstract:
An engine includes an inlet tube introducing air to a combustion process and a first plurality of fuel injectors disposed in the inlet tube and used for scram-jet engine operation. The engine includes a second plurality of fuel injectors used for ram-jet engine operation. The second plurality of fuel injectors is upstream from the first plurality of fuel injectors and is disposed in the inlet tube. The engine includes a combustor swirl zone downstream of and adjacent to the first plurality of fuel injectors.
Abstract:
Embodiments of a combustor for a gas turbine engine are provided herein. In some embodiments, a combustion chamber for a gas turbine engine comprising may include a combustor having an inner volume defined at least partially by a front wall, wherein the wall comprises a plurality of facets each having a through hole fluidly coupled to the inner volume, and wherein the plurality of facets are oriented such that an axis of each of the plurality of facets is offset from a central axis of the combustor by an angle.
Abstract:
A combustor for a turbine engine includes an inner combustion liner and an outer combustion liner together defining at least in part an interior. The interior includes a combustion chamber and a main portion. The combustor also includes an inlet combustion liner at least partially defining the combustion chamber of the interior and including an inlet assembly. The inlet assembly includes at least two cavity air tubes arranged along the axial direction, each cavity air tube extending between an inlet and an outlet, the outlet of each cavity air tube in airflow communication with the combustion chamber for providing the combustion chamber with a flow of air.
Abstract:
Embodiments of a combustor for a gas turbine engine are provided herein. In some embodiments, a combustion chamber for a gas turbine engine comprising may include a combustor having an inner volume defined at least partially by a front wall, wherein the wall comprises a plurality of facets each having a through hole fluidly coupled to the inner volume, and wherein the plurality of facets are oriented such that an axis of each of the plurality of facets is offset from a central axis of the combustor by an angle.
Abstract:
A turbine assembly is provided. The turbine assembly includes a gas turbine engine including at least one hot gas path component formed at least partially from a ceramic matrix composite material. The turbine assembly also includes a treatment system positioned to receive a flow of exhaust gas from the gas turbine engine. The treatment system is configured to remove water from the flow of exhaust gas to form a flow of treated exhaust gas, and to channel the flow of treated exhaust gas towards the at least one hot gas path component. The at least one hot gas path component includes a plurality of cooling holes for channeling the flow of treated exhaust gas therethrough, such that a protective film is formed over the at least one hot gas path component.