Abstract:
The present disclosure is directed to systems and methods for manufacturing a wind turbine rotor blade that can be easily lifted and lowered to and from a rotor installed atop a tower. The method includes providing a plurality of root inserts for a blade root of the blade and securing at least one cylindrical member to one of the root inserts such that the cylindrical member is substantially perpendicular with the root insert. The method also includes arranging the root inserts in a blade mold of the blade and forming a blade shell with the plurality of root inserts laminated therein. The method may further include securing at least one attachment component within each of the cylindrical members so as to provide an attachment location for a pulley cable used to lift and lower the rotor blade to and from the rotor installed atop the tower.
Abstract:
A method for repairing or servicing a wye ring of a generator includes the steps of, dismantling the generator to gain access to the wye ring, determining a fault location in the wye ring; and attaching a patch to the wye ring in an area of the fault location. The patch provides an electrical path around the fault location so that the generator is repaired.
Abstract:
The present disclosure is directed to a suspension system for a wind turbine rotor blade and methods for suspending said rotor blade from a hub thereof. The method includes positioning the rotor blade in a substantially six o'clock position. Another step includes removing at least one root attachment assembly from an adjacent rotor blade and providing at least one passageway from an exterior surface of the adjacent rotor blade to the root attachment assembly. Still another step includes inserting a cable through the passageway such that the cable engages an interior surface of the adjacent rotor blade and extends from within the adjacent rotor blade to the lowered rotor blade. The method further includes securing the cable to the rotor blade at an attachment location. Next, the method includes lowering the rotor blade a vertical distance from the hub until the blade is supported by the cable.
Abstract:
The present disclosure is directed to systems and methods for removing or installing a pitch bearing of a wind turbine. The method includes installing a first pulley block at an up-tower location of the wind turbine and configuring a second pulley block with the pitch bearing. A pulley cable is routed from a ground location over the first pulley block to the second pulley block such that the second pulley block is configured to slide along the pulley cable. The method also includes rotating the pitch bearing to a tilted position. Thus, the method further includes lowering or lifting the pitch bearing in the tilted position so as to prevent the pitch bearing from colliding with the tower.
Abstract:
A method for removing a rotor blade from a wind turbine may generally include installing a blade sock around an outer perimeter of the rotor blade, coupling a support cable to the blade root, lowering the rotor blade relative to the hub using the support cable, coupling at least one pulley cable between the rotor blade and a winch using at least one pulley, moving the pulley cable relative to the pulley to lower the rotor blade relative to the hub, applying a force through the blade sock as the pulley cable is moved relative to the pulley in order to control an orientation of the rotor blade and further lowering the rotor blade to a location on or adjacent to the support surface.
Abstract:
The present disclosure is directed to a system and method for lifting and/or removing a rotor blade to and from a wind turbine. In one embodiment, the system includes an up-tower pulley mounted on an up-tower location of the wind turbine, first and second ground winches, a pulley cable from the first ground winch over the up-tower pulley and attached to the rotor blade, a guide line attached between an up-tower location of the wind turbine and the second ground winch, a guide pulley mounted on the guide line, and a guide cable from the guide line over the guide pulley to the rotor blade. Thus, the guide pulley is configured to move along the guide line during lifting and removing of the rotor blade so that the guide cable can control an orientation of the rotor blade relative to the tower during lifting and removing of the rotor blade.
Abstract:
The present disclosure is directed to systems and methods for removing or installing a pitch bearing of a wind turbine. The method includes installing a first pulley block at an up-tower location of the wind turbine and configuring a second pulley block with the pitch bearing. A pulley cable is routed from a ground location over the first pulley block to the second pulley block such that the second pulley block is configured to slide along the pulley cable. The method also includes rotating the pitch bearing to a tilted position. Thus, the method further includes lowering or lifting the pitch bearing in the tilted position so as to prevent the pitch bearing from colliding with the tower.
Abstract:
The present disclosure is directed to a suspension system for a wind turbine rotor blade and methods for suspending said rotor blade from a hub thereof. The method includes positioning the rotor blade in a substantially six o'clock position. Another step includes removing at least one root attachment assembly from an adjacent rotor blade and providing at least one passageway from an exterior surface of the adjacent rotor blade to the root attachment assembly. Still another step includes inserting a cable through the passageway such that the cable engages an interior surface of the adjacent rotor blade and extends from within the adjacent rotor blade to the lowered rotor blade. The method further includes securing the cable to the rotor blade at an attachment location. Next, the method includes lowering the rotor blade a vertical distance from the hub until the blade is supported by the cable.
Abstract:
A wye ring centering system is provided. The system includes a plurality of rollers configured for contacting a wye ring, and a plurality of mounting fasteners configured for supporting the plurality of rollers. Each of the mounting fasteners is configured to pass through a fan hub. The plurality of rollers and the plurality of mounting fasteners are distributed at substantially equal intervals around the fan hub. The wye ring is placed over the plurality of rollers to center the wye ring around a shaft.
Abstract:
A method for enabling servicing of a wind turbine rotor includes coupling a support cable to the blade root, the support cable extends from the blade root to a hub of the wind turbine. A lowering step lowers a rotor blade relative to the hub using the support cable so the rotor blade is spaced apart from the hub by an initial vertical distance. An installing step installs a rotor blade sling on the rotor, the rotor blade sling supports the rotor blade. Other steps are used for coupling the rotor blade to the rotor blade sling, lowering the rotor blade such that the rotor blade is spaced apart from the hub by a distance greater than the initial vertical distance, de-coupling the support cable from the blade root, and interposing a rotor servicing fixture between the rotor blade and hub. The rotor servicing fixture is configured to transport a rotor part.