Abstract:
An imaging system is provided. The imaging system includes an X-ray radiation source. The imaging system also includes a source controller coupled to the X-ray radiation source and configured to modulate an exposure pattern from the X-ray radiation source to enable a coded exposure sequence. The imaging system further includes a digital X-ray detector configured to acquire image data that includes at least one coded motion blur.
Abstract:
A method for controlling a wind turbine connected to an electrical grid includes receiving, via a controller, a state estimate of the wind turbine. The method also includes determining, via the controller, a current condition of the wind turbine using, at least, the state estimate, the current condition defining a set of condition parameters of the wind turbine. Further, the method includes receiving, via the controller, a control function from a supervisory controller, the control function defining a relationship of the set of condition parameters with at least one operational parameter of the wind turbine. Moreover, the method includes dynamically controlling, via the controller, the wind turbine based on the current condition and the control function for multiple dynamic control intervals.
Abstract:
Systems and methods for estimating when an engine event occurs is described. The system includes a controller configured to receive a first signal from at least one knock sensor coupled to a combustion engine, receive a second signal from at least one engine crankshaft sensor coupled to the combustion engine, transform the first and second signals into a plurality of feature vectors using a multivariate transformation algorithm, determine an expected window of an engine event with a statistical model, center a segment of the plurality of feature vectors around the expected window, estimate, using the statistical algorithm, a time in the expected window corresponding to when the engine event occurred, and adjust operation of the combustion engine based on the time.
Abstract:
Systems and methods for examining a route inject one or more electrical examination signals into a conductive route from onboard a vehicle system traveling along the route, detect one or more electrical characteristics of the route based on the one or more electrical examination signals, apply a filter to the one or more electrical characteristics, and detect a break in conductivity of the route responsive to the one or more electrical characteristics decreasing by more than a designated drop threshold for a time period within a designated drop time period. Feature vectors may be determined for the electrical characteristics and compared to one or more patterns in order to distinguish between breaks in the conductivity of the route and other causes for changes in the electrical characteristics.
Abstract:
Systems for examining a route inject one or more electrical examination signals into a conductive route from onboard a vehicle system traveling along the route, detect one or more electrical characteristics of the route based on the one or more electrical examination signals, and detect a break in conductivity of the route responsive to the one or more electrical characteristics decreasing by more than a designated drop threshold for a time period within a designated drop time period. Feature vectors may be determined for the electrical characteristics and compared to one or more patterns in order to distinguish between breaks in the conductivity of the route and other causes for changes in the electrical characteristics.
Abstract:
In an example embodiment, a method of calculating end-of-life (EOL) predictions for a physical asset is provided. A state-space model for the physical asset is obtained, the state-space model being a physics-based model describing a state of the physical asset at a particular time given measurements or observations for the physical asset. Then a current state of the physical asset is inferred. Then a long-term prediction is derived for the physical asset based on the inferred current state of the physical asset and the state-space model for the physical asset. Then an EOL probability distribution function is generated for the physical asset based on the long-term prediction, the EOL probability distribution function describing a range of estimates of EOL for the physical asset and their corresponding confidence intervals.
Abstract:
A method of performing online diagnostics for a valve includes receiving valve information while the valve is in operation. The valve information includes setpoint data and position data associated with the valve. The method further includes processing the setpoint data and the position data at a plurality of time intervals, and detecting an occurrence of a stick-slip based on the processing.
Abstract:
A method for performing diagnostics for a valve assembly includes obtaining valve assembly information including a set of data points where each data point of the set of data points includes a position of an actuator stem. The method includes classifying each data point of the set of data points as at least one of a plurality of data point types where the plurality of data point types includes a first data point type and a second data point type. The method also includes determining at least one valve assembly characteristic based on the classification of each data point of the set of data points where determining the at least one valve assembly characteristic includes measuring the position of the actuator stem at a specific point in time.
Abstract:
A method for image alignment is disclosed. In one embodiment, the method includes acquiring a facial image of a person and using a discriminative face alignment model to fit a generic facial mesh to the facial image to facilitate locating of facial features. The discriminative face alignment model may include a generative shape model component and a discriminative appearance model component. Further, the discriminative appearance model component may have been trained to estimate a score function that minimizes the angle between a gradient direction and a vector pointing toward a ground-truth shape parameter. Additional methods, systems, and articles of manufacture are also disclosed.
Abstract:
A method for image alignment is disclosed. In one embodiment, the method includes acquiring a facial image of a person and using a discriminative face alignment model to fit a generic facial mesh to the facial image to facilitate locating of facial features. The discriminative face alignment model may include a generative shape model component and a discriminative appearance model component. Further, the discriminative appearance model component may have been trained to estimate a score function that minimizes the angle between a gradient direction and a vector pointing toward a ground-truth shape parameter. Additional methods, systems, and articles of manufacture are also disclosed.