Adaptive ranking of news feed in social networking systems
    32.
    发明授权
    Adaptive ranking of news feed in social networking systems 有权
    社交网络系统中新闻Feed的适应性排名

    公开(公告)号:US09286575B2

    公开(公告)日:2016-03-15

    申请号:US14286803

    申请日:2014-05-23

    Applicant: Facebook, Inc.

    CPC classification number: G06N99/005 G06F17/30867 G06Q10/06393 G06Q50/01

    Abstract: Machine learning models are used for ranking news feed stories presented to users of a social networking system. The social networking system divides its users into different sets, for example, based on demographic characteristics of the users and generates one model for each set of users. The models are periodically retrained. The news feed ranking model may rank news feeds for a user based on information describing other users connected to the user in the social networking system. Information describing other users connected to the user includes interactions of the other users with objects associated with news feed stories. These interactions include commenting on a news feed story, liking a news feed story, or retrieving information, for example, images, videos associated with a news feed story.

    Abstract translation: 机器学习模型用于对社交网络系统的用户提供新闻馈送故事。 社交网络系统将用户分为不同的集合,例如基于用户的人口特征,并为每组用户生成一个模型。 这些模型定期进行再培训。 新闻排序模型可以基于描述在社交网络系统中连接到用户的其他用户的信息来为用户排序新闻馈送。 描述连接到用户的其他用户的信息包括其他用户与与新闻馈送故事相关联的对象的交互。 这些互动包括评论新闻Feed故事,喜欢新闻Feed故事或检索信息,例如图像,与新闻Feed故事相关的视频。

    ARRANGING STORIES ON NEWSFEEDS BASED ON EXPECTED VALUE SCORING ON A SOCIAL NETWORKING SYSTEM
    33.
    发明申请
    ARRANGING STORIES ON NEWSFEEDS BASED ON EXPECTED VALUE SCORING ON A SOCIAL NETWORKING SYSTEM 有权
    基于在社会网络系统上预期的价值评分的新闻安排

    公开(公告)号:US20140172875A1

    公开(公告)日:2014-06-19

    申请号:US13715999

    申请日:2012-12-14

    Applicant: Facebook, Inc.

    CPC classification number: G06F17/3053 G06F17/24 G06F17/30867 G06Q50/01

    Abstract: A social networking system generates a newsfeed for a user to view when accessing the social networking system. Candidate stories associated with users of the social networking system are selected and an expected value score for each candidate story is determined. An expected value score is based on the probability of a user performing various types of interactions with a candidate story and a numerical value for each type of interaction. The numerical value for a type of interaction represents a value to the social networking system of the type of interaction. Based on the expected value scores, the candidate stories are ranked and the ranking used to select candidate stories for the newsfeed.

    Abstract translation: 社交网络系统为用户生成访问社交网络系统的新闻源。 选择与社交网络系统的用户相关联的候选故事,并确定每个候选故事的预期值分数。 期望值分数基于用户对候选故事进行各种类型的交互的概率和每种类型的交互的数值。 互动类型的数值代表了交互类型的社交网络系统的价值。 根据预期值得分,候选人的故事排名,排名用于选择新闻源的候选故事。

Patent Agency Ranking