-
31.
公开(公告)号:US11922348B2
公开(公告)日:2024-03-05
申请号:US17656925
申请日:2022-03-29
Applicant: Enlitic, Inc.
Inventor: Kevin Lyman , Li Yao , Eric C. Poblenz , Jordan Prosky , Ben Covington , Anthony Upton
IPC: G16H50/20 , A61B5/00 , G06F3/0482 , G06F3/0484 , G06F9/54 , G06F16/245 , G06F18/21 , G06F18/2115 , G06F18/214 , G06F18/2415 , G06F18/40 , G06F21/62 , G06N5/04 , G06N5/045 , G06N20/00 , G06N20/20 , G06Q10/0631 , G06Q20/14 , G06T3/40 , G06T5/00 , G06T5/50 , G06T7/00 , G06T7/10 , G06T7/11 , G06T7/187 , G06T7/44 , G06T11/00 , G06T11/20 , G06V10/22 , G06V10/25 , G06V10/764 , G06V10/82 , G06V30/19 , G06V40/16 , G16H10/20 , G16H10/60 , G16H15/00 , G16H30/20 , G16H30/40 , G16H40/20 , H04L67/01 , H04L67/12 , A61B5/055 , A61B6/00 , A61B6/03 , A61B8/00 , G06F18/2111 , G06F18/24 , G06F40/295 , G06Q50/22 , G06T7/70 , G06V30/194 , G16H50/30 , G16H50/70
CPC classification number: G06Q10/06315 , A61B5/7264 , G06F3/0482 , G06F3/0484 , G06F9/542 , G06F16/245 , G06F18/2115 , G06F18/214 , G06F18/217 , G06F18/2415 , G06F18/41 , G06F21/6254 , G06N5/04 , G06N5/045 , G06N20/00 , G06N20/20 , G06Q20/14 , G06T3/40 , G06T5/002 , G06T5/008 , G06T5/50 , G06T7/0012 , G06T7/0014 , G06T7/10 , G06T7/11 , G06T7/187 , G06T7/44 , G06T7/97 , G06T11/001 , G06T11/006 , G06T11/206 , G06V10/225 , G06V10/25 , G06V10/764 , G06V10/82 , G06V30/19173 , G06V40/171 , G16H10/20 , G16H10/60 , G16H15/00 , G16H30/20 , G16H30/40 , G16H40/20 , G16H50/20 , H04L67/01 , H04L67/12 , A61B5/055 , A61B6/032 , A61B6/5217 , A61B8/4416 , G06F18/2111 , G06F18/24 , G06F40/295 , G06Q50/22 , G06T7/70 , G06T2200/24 , G06T2207/10048 , G06T2207/10081 , G06T2207/10088 , G06T2207/10116 , G06T2207/10132 , G06T2207/20076 , G06T2207/20081 , G06T2207/20084 , G06T2207/30004 , G06T2207/30008 , G06T2207/30016 , G06T2207/30061 , G06V30/194 , G06V2201/03 , G16H50/30 , G16H50/70
Abstract: A multi-model medical scan analysis system is operable to generate a plurality of training sets from a plurality of medical scans. Each of a set of sub-models is generated by performing a training step on a corresponding one of the plurality of training sets of the plurality of medical scans. A set of abnormality data is generated by applying a subset of a set of inference functions on a new medical scan. The subset of the set of inference functions utilize the subset of the set of sub-models, and each of the set of abnormality data is generated as output of performing one of the subset of the set of inference functions. The multi-model medical scan analysis system is further operable to generate final abnormality data that includes a global probability indicating a probability that any abnormality is present based on the set of abnormality data.
-
公开(公告)号:US11669792B2
公开(公告)日:2023-06-06
申请号:US17457050
申请日:2021-12-01
Applicant: Enlitic, Inc.
Inventor: Kevin Lyman , Li Yao , Eric C. Poblenz , Jordan Prosky , Ben Covington , Anthony Upton
IPC: G16H30/20 , G06Q10/0631 , G16H10/60 , G16H30/40 , G16H15/00 , G06T5/00 , G06T5/50 , G06T7/00 , G06T11/00 , G06N5/04 , G06N20/00 , G06F9/54 , G06T7/187 , G06T7/11 , G06F3/0482 , G06T3/40 , A61B5/00 , G16H50/20 , G06F21/62 , G06Q20/14 , G16H40/20 , G06F3/0484 , G16H10/20 , G06N5/045 , G06T7/10 , G06T11/20 , G06F16/245 , G06T7/44 , G06N20/20 , H04L67/12 , H04L67/01 , G06V10/82 , G06F18/40 , G06F18/214 , G06F18/21 , G06F18/2115 , G06F18/2415 , G06V10/25 , G06V30/19 , G06V10/764 , G06V40/16 , G06V10/22 , G16H50/70 , G06T7/70 , G16H50/30 , A61B5/055 , A61B6/03 , A61B8/00 , A61B6/00 , G06Q50/22 , G06F40/295 , G06F18/24 , G06F18/2111 , G06V30/194
CPC classification number: G06Q10/06315 , A61B5/7264 , G06F3/0482 , G06F3/0484 , G06F9/542 , G06F16/245 , G06F18/214 , G06F18/217 , G06F18/2115 , G06F18/2415 , G06F18/41 , G06F21/6254 , G06N5/04 , G06N5/045 , G06N20/00 , G06N20/20 , G06Q20/14 , G06T3/40 , G06T5/002 , G06T5/008 , G06T5/50 , G06T7/0012 , G06T7/0014 , G06T7/10 , G06T7/11 , G06T7/187 , G06T7/44 , G06T7/97 , G06T11/001 , G06T11/006 , G06T11/206 , G06V10/225 , G06V10/25 , G06V10/764 , G06V10/82 , G06V30/19173 , G06V40/171 , G16H10/20 , G16H10/60 , G16H15/00 , G16H30/20 , G16H30/40 , G16H40/20 , G16H50/20 , H04L67/01 , H04L67/12 , A61B5/055 , A61B6/032 , A61B6/5217 , A61B8/4416 , G06F18/2111 , G06F18/24 , G06F40/295 , G06Q50/22 , G06T7/70 , G06T2200/24 , G06T2207/10048 , G06T2207/10081 , G06T2207/10088 , G06T2207/10116 , G06T2207/10132 , G06T2207/20076 , G06T2207/20081 , G06T2207/20084 , G06T2207/30004 , G06T2207/30008 , G06T2207/30016 , G06T2207/30061 , G06V30/194 , G06V2201/03 , G16H50/30 , G16H50/70
Abstract: A medical scan triaging system is operable to train a computer vision model and to generate abnormality data indicating abnormality probabilities for medical scans via the computer vision model. A first subset of medical scans is determined by identifying medical scans with abnormality probabilities greater than a first probability value of a triage probability threshold. A second subset of medical scans is determined by identifying medical scans with abnormality probabilities less than the first probability value. An updated first subset of medical scans is determined by identifying medical scans with abnormality probabilities greater than a second probability value of an updated triage probability threshold. An updated second subset of the plurality of medical scans is determined by identifying medical scans with a abnormality probabilities less than the second probability value. The updated first subset of medical scans is transmitted to client devices.
-
公开(公告)号:US11669790B2
公开(公告)日:2023-06-06
申请号:US17336648
申请日:2021-06-02
Applicant: Enlitic, Inc.
Inventor: Kevin Lyman , Li Yao , Eric C. Poblenz , Jordan Prosky , Ben Covington , Anthony Upton
IPC: G06Q10/0631 , G16H10/60 , G16H30/40 , G16H15/00 , G06T5/00 , G06T5/50 , G06T7/00 , G06T11/00 , G06N5/04 , G16H30/20 , G06N20/00 , G06F9/54 , G06T7/187 , G06T7/11 , G06F3/0482 , G06T3/40 , A61B5/00 , G16H50/20 , G06F21/62 , G06Q20/14 , G16H40/20 , G06F3/0484 , G16H10/20 , G06N5/045 , G06T7/10 , G06T11/20 , G06F16/245 , G06T7/44 , G06N20/20 , H04L67/12 , H04L67/01 , G06V10/82 , G06F18/40 , G06F18/214 , G06F18/21 , G06F18/2115 , G06F18/2415 , G06V10/25 , G06V30/19 , G06V10/764 , G06V40/16 , G06V10/22 , G16H50/70 , G06T7/70 , G16H50/30 , A61B5/055 , A61B6/03 , A61B8/00 , A61B6/00 , G06Q50/22 , G06F40/295 , G06F18/24 , G06F18/2111 , G06V30/194
CPC classification number: G06Q10/06315 , A61B5/7264 , G06F3/0482 , G06F3/0484 , G06F9/542 , G06F16/245 , G06F18/214 , G06F18/217 , G06F18/2115 , G06F18/2415 , G06F18/41 , G06F21/6254 , G06N5/04 , G06N5/045 , G06N20/00 , G06N20/20 , G06Q20/14 , G06T3/40 , G06T5/002 , G06T5/008 , G06T5/50 , G06T7/0012 , G06T7/0014 , G06T7/10 , G06T7/11 , G06T7/187 , G06T7/44 , G06T7/97 , G06T11/001 , G06T11/006 , G06T11/206 , G06V10/225 , G06V10/25 , G06V10/764 , G06V10/82 , G06V30/19173 , G06V40/171 , G16H10/20 , G16H10/60 , G16H15/00 , G16H30/20 , G16H30/40 , G16H40/20 , G16H50/20 , H04L67/01 , H04L67/12 , A61B5/055 , A61B6/032 , A61B6/5217 , A61B8/4416 , G06F18/2111 , G06F18/24 , G06F40/295 , G06Q50/22 , G06T7/70 , G06T2200/24 , G06T2207/10048 , G06T2207/10081 , G06T2207/10088 , G06T2207/10116 , G06T2207/10132 , G06T2207/20076 , G06T2207/20081 , G06T2207/20084 , G06T2207/30004 , G06T2207/30008 , G06T2207/30016 , G06T2207/30061 , G06V30/194 , G06V2201/03 , G16H50/30 , G16H50/70
Abstract: An intensity transform augmentation system is operable to generate a plurality of sets of augmented images by performing a set of intensity transformation functions on each of a training set of medical scans. Each of the set of intensity transformation functions are based on density properties of corresponding anatomy feature present in the training set of medical scans. A computer vision model is generated by performing a training step on the plurality of sets of augmented images, where each augmented image of a set of augmented images is assigned same output label data based on a corresponding one of the training set of medical scans. Inference data is generated by performing an inference function on a new medical scan by utilizing the computer vision model on the new medical scan. The inference data is transmitted to a client device for display via a display device.
-
公开(公告)号:US11626194B2
公开(公告)日:2023-04-11
申请号:US17100059
申请日:2020-11-20
Applicant: Enlitic, Inc.
Inventor: Jordan Prosky , Li Yao , Eric C. Poblenz , Kevin Lyman , Ben Covington , Anthony Upton
IPC: G06F40/295 , G06V30/194 , G16H10/60 , G16H30/40 , G16H15/00 , G06K9/62 , G06T5/00 , G06T5/50 , G06T7/00 , G06T11/00 , G06N5/04 , G16H30/20 , G06N20/00 , G06F9/54 , G06T7/187 , G06T7/11 , G06F3/0482 , G06T3/40 , A61B5/00 , G16H50/20 , G06F21/62 , G06Q20/14 , G16H40/20 , G06F3/0484 , G06Q10/0631 , G16H10/20 , G06N5/045 , G06T7/10 , G06T11/20 , G06F16/245 , G06T7/44 , G06N20/20 , H04L67/12 , G06V10/22 , H04L67/01 , G06V10/82 , G16H50/70 , G06T7/70 , G16H50/30 , A61B5/055 , A61B6/03 , A61B8/00 , A61B6/00 , G06Q50/22
Abstract: An intensity transform augmentation system is operable to receive a training set of medical scans. Random intensity transformation function parameters are generated for each medical scan of the training set of medical scans. A plurality of augmented images are generated, where each of the plurality of augmented images is generated by performing a intensity transformation function on one of the training set of medical scans by utilizing the random intensity transform parameters generated for the one of the training set of medical scan. A computer vision model is generated by performing a training step on the plurality of augmented images. A new medical scan is received via the receiver. Inference data is generated by performing an inference function that utilizes the computer vision model on the new medical scan. The inference data is transmitted to a client device for display via a display device.
-
35.
公开(公告)号:US20220215918A1
公开(公告)日:2022-07-07
申请号:US17656526
申请日:2022-03-25
Applicant: Enlitic, Inc.
Inventor: Li Yao , Jordan Prosky , Eric C. Poblenz , Kevin Lyman , Ben Covington , Anthony Upton
IPC: G16H10/60 , H04L67/01 , G16H30/40 , G16H15/00 , G06K9/62 , G06T5/00 , G06T5/50 , G06T7/00 , G06T11/00 , G06N5/04 , G16H30/20 , G06N20/00 , G06F9/54 , G06T7/187 , G06T7/11 , G06F3/0482 , G06T3/40 , A61B5/00 , G16H50/20 , G06F21/62 , G06Q20/14 , G16H40/20 , G06F3/0484 , G06Q10/06 , G16H10/20 , G06T7/10 , G06T11/20 , G06F16/245 , G06T7/44 , G06N20/20 , H04L67/12 , G06V10/22
Abstract: A method includes generating first contrast significance data for a first computer vision model generated from a first training set of medical scans. First significant contrast parameters are identified based on the first contrast significance data. A first re-contrasted training set is generated based on performing a first intensity transformation function on the first training set of medical scans, where the first intensity transformation function utilizes the first significant contrast parameters. A first re-trained model is generated from the first re-contrasted training set, which is associated with corresponding output labels based on abnormality data for the first training set of medical scans. Re-contrasted image data of a new medical scan is generated based on performing the first intensity transformation function. Inference data indicating at least one abnormality detected in the new medical scan is generated based on utilizing the first re-trained model on the re-contrasted image data.
-
公开(公告)号:US20220215915A1
公开(公告)日:2022-07-07
申请号:US17573184
申请日:2022-01-11
Applicant: Enlitic, Inc.
Inventor: Kevin Lyman , Li Yao , Eric C. Poblenz , Jordan Prosky , Ben Covington , Anthony Upton , Lionel Lints
IPC: G16H10/60 , H04L67/01 , G16H30/40 , G16H15/00 , G06K9/62 , G06T5/00 , G06T5/50 , G06T7/00 , G06T11/00 , G06N5/04 , G16H30/20 , G06N20/00 , G06F9/54 , G06T7/187 , G06T7/11 , G06F3/0482 , G06T3/40 , A61B5/00 , G16H50/20 , G06F21/62 , G06Q20/14 , G16H40/20 , G06F3/0484 , G06Q10/06 , G16H10/20 , G06T7/10 , G06T11/20 , G06F16/245 , G06T7/44 , G06N20/20 , H04L67/12 , G06V10/22
Abstract: A model-assisted annotating system is operable to receive a first set of annotation data, corresponding to a broad type of annotation data output. A first training step is performed to train a computer vision model using the first set of annotation data. A second set of annotation data corresponding to the broad type of annotation data output is generated performing an inference function utilizing the computer vision model on medical scans. Additional annotation data further specifies the broad type of annotation data output is received. A second training step is performed to generate an updated computer vision model using set of additional annotation data. A third set of annotation data corresponding to the specified type of annotation data output is generated by performing an updated inference function utilizing the updated computer vision model on medical scans.
-
公开(公告)号:US11322233B2
公开(公告)日:2022-05-03
申请号:US16360682
申请日:2019-03-21
Applicant: Enlitic, Inc.
Inventor: Li Yao , Jordan Prosky , Eric C. Poblenz , Kevin Lyman , Ben Covington , Anthony Upton
IPC: G06Q20/14 , G16H40/20 , G06F3/0484 , G16H10/20 , G06F16/245 , G06T7/44 , H04L67/12 , G06V10/22 , G16H50/70 , G06T7/70 , G16H50/30 , A61B5/055 , A61B6/03 , A61B8/00 , A61B6/00 , G06Q50/22 , G16H10/60 , H04L67/01 , G16H30/40 , G16H15/00 , G06K9/62 , G06T5/00 , G06T5/50 , G06T7/00 , G06T11/00 , G06N5/04 , G16H30/20 , G06N20/00 , G06F9/54 , G06T7/187 , G06T7/11 , G06F3/0482 , G06T3/40 , A61B5/00 , G16H50/20 , G06F21/62 , G06Q10/06 , G06T7/10 , G06T11/20 , G06N20/20 , G06F40/295 , G06V30/194
Abstract: A contrast parameter learning system is operable to generate contrast significance data for a computer vision model, where the computer vision model was generated by performing a training step on a training set of medical scans. Significant contrast parameters are identified based on the contrast significance data. A re-contrasted training set is generated by performing an intensity transformation function that utilizes the significant contrast parameters on the training set of medical scans. A re-trained model is generated by performing the training step on the first re-contrasted training set. Re-contrasted image data of a new medical scan is generated by performing the intensity transformation function. Inference data is generated by performing an inference function that utilizes the first re-trained model on the re-contrasted image data. The inference data is transmitted via the transmitter to a client device for display via a display device.
-
公开(公告)号:US11282595B2
公开(公告)日:2022-03-22
申请号:US17022324
申请日:2020-09-16
Applicant: Enlitic, Inc.
Inventor: Li Yao , Jordan Prosky , Eric C. Poblenz , Kevin Lyman , Lionel Lints , Ben Covington , Anthony Upton
IPC: G06K9/00 , G16H10/60 , H04L67/01 , G16H30/40 , G16H15/00 , G06K9/62 , G06T5/00 , G06T5/50 , G06T7/00 , G06T11/00 , G06N5/04 , G16H30/20 , G06N20/00 , G06F9/54 , G06T7/187 , G06T7/11 , G06F3/0482 , G06T3/40 , A61B5/00 , G16H50/20 , G06F21/62 , G06Q20/14 , G16H40/20 , G06F3/0484 , G06Q10/06 , G16H10/20 , G06T7/10 , G06T11/20 , G06F16/245 , G06T7/44 , G06N20/20 , G06K9/20 , H04L67/12 , G16H50/70 , G06T7/70 , G16H50/30 , A61B5/055 , A61B6/03 , A61B8/00 , G06K9/66 , A61B6/00 , G06Q50/22 , G06F40/295
Abstract: A multi-label heat map generating system is operable to receive a plurality of medical scans and a corresponding plurality of global labels that each correspond to one of a set of abnormality classes. A computer vision model is generated by training on the medical scans and the global labels. Probability matrix data, which includes a set of image patch probability values that each indicate a probability that a corresponding one of the set of abnormality classes is present in each of a set of image patches, is generated by performing an inference function that utilizes the computer vision model on a new medical scan. Heat map visualization data can be generated for transmission to a client device based on the probability matrix data that indicates, for each of the set of abnormality classes, a color value for each pixel of the new medical scan.
-
39.
公开(公告)号:US20210183485A1
公开(公告)日:2021-06-17
申请号:US17165316
申请日:2021-02-02
Applicant: Enlitic, Inc.
Inventor: Li Yao , Jordan Prosky , Eric C. Poblenz , Kevin Lyman
IPC: G16H10/60 , H04L29/06 , G16H30/40 , G16H15/00 , G06K9/62 , G06T5/00 , G06T5/50 , G06T7/00 , G06T11/00 , G06N5/04 , G16H30/20 , G06N20/00 , G06F9/54 , G06T7/187 , G06T7/11 , G06F3/0482 , G06T3/40 , A61B5/00 , G16H50/20 , G06F21/62 , G06Q20/14 , G16H40/20 , G06F3/0484 , G06Q10/06 , G16H10/20 , G06T7/10 , G06T11/20 , G06F16/245 , G06T7/44 , G06N20/20 , G06K9/20 , H04L29/08
Abstract: A global multi-label generating system is operable to receive a plurality of medical scans and a corresponding plurality of global labels that each correspond to one of a set of abnormality classes. A computer vision model is generated by training on the medical scans and the global labels. Probability matrix data, which includes a set of image patch probability values that each indicate a probability that a corresponding one of the set of abnormality classes is present in each of a set of image patches, is generated by performing an inference function that utilizes the computer vision model on a new medical scan. Global probability data that includes a set of global probability values each indicating a probability that a corresponding one of the set of abnormality classes is present in the new medical scan is generated based on the probability matrix data for transmission to a client device.
-
公开(公告)号:US10818386B2
公开(公告)日:2020-10-27
申请号:US16299706
申请日:2019-03-12
Applicant: Enlitic, Inc.
Inventor: Li Yao , Jordan Prosky , Eric C. Poblenz , Kevin Lyman , Lionel Lints , Ben Covington , Anthony Upton
IPC: G06K9/00 , G16H10/60 , H04L29/06 , G16H30/40 , G16H15/00 , G06K9/62 , G06T5/00 , G06T5/50 , G06T7/00 , G06T11/00 , G06N5/04 , G16H30/20 , G06N20/00 , G06F9/54 , G06T7/187 , G06T7/11 , G06F3/0482 , G06T3/40 , A61B5/00 , G16H50/20 , G06F21/62 , G06Q20/14 , G16H40/20 , G06F3/0484 , G06Q10/06 , G16H10/20 , G06T7/10 , G06T11/20 , G06F16/245 , G06T7/44 , G06N20/20 , G06K9/20 , H04L29/08 , G16H50/70 , G06T7/70 , G16H50/30 , A61B5/055 , A61B6/03 , A61B8/00 , G06K9/66 , A61B6/00 , G06Q50/22 , G06F40/295
Abstract: A multi-label heat map generating system is operable to receive a plurality of medical scans and a corresponding plurality of global labels that each correspond to one of a set of abnormality classes. A computer vision model is generated by training on the medical scans and the global labels. Probability matrix data, which includes a set of image patch probability values that each indicate a probability that a corresponding one of the set of abnormality classes is present in each of a set of image patches, is generated by performing an inference function that utilizes the computer vision model on a new medical scan. Heat map visualization data can be generated for transmission to a client device based on the probability matrix data that indicates, for each of the set of abnormality classes, a color value for each pixel of the new medical scan.
-
-
-
-
-
-
-
-
-