Abstract:
A heart valve sizer and sizer cover are provided for determining the size of a heart valve annulus. The valve sizer can include a handle, a shaft extending distally from the handle, a sizing element coupled to the distal end of the shaft, the sizing element being movable between a first retracted position and a second expanded position, and a sizer cover. The sizer cover can be formed from a continuous sheet of material configured to surround at least a portion of the sizing element of the heart valve sizer so as to guard against entanglement of the sizing element with structures of a human heart.
Abstract:
A prosthetic heart valve configured to replace a native heart valve and having a support frame configured to be reshaped into an expanded form in order to receive and/or support an expandable prosthetic heart valve therein is disclosed, together with methods of using same. The prosthetic heart valve may be configured to have a generally rigid and/or expansion-resistant configuration when initially implanted to replace a native valve (or other prosthetic heart valve), but to assume a generally expanded form when subjected to an outward force such as that provided by a dilation balloon or other mechanical expander.
Abstract:
A prosthetic heart valve configured to replace a native heart valve and for post-implant expansion and having a valve-type indicator thereon visible from outside the body post-implant. The indicator communicates information about the valve, such as the size or orifice diameter of the valve, and/or that the valve has the capacity for post-implant expansion. The indicator can be an alphanumeric symbol or other symbol or combination of symbols that represent information about the characteristics of the valve such as the valve size. The capacity for post-implant expansion facilitates a valve-in-valve procedure, where the valve-type indicator conveys information to the surgeon about whether the implanted valve is suitable for the procedure and informs the choice of the secondary valve.
Abstract:
A prosthetic heart valve configured to replace a native heart valve and for post-implant expansion and having a valve-type indicator thereon visible from outside the body post-implant. The indicator communicates information about the valve, such as the size or orifice diameter of the valve, and/or that the valve has the capacity for post-implant expansion. The indicator can be an alphanumeric symbol or other symbol or combination of symbols that represent information about the characteristics of the valve such as the valve size. The capacity for post-implant expansion facilitates a valve-in-valve procedure, where the valve-type indicator conveys information to the surgeon about whether the implanted valve is suitable for the procedure and informs the choice of the secondary valve.
Abstract:
A prosthetic heart valve configured to replace a native heart valve and having a support frame configured to be reshaped into an expanded form in order to receive and/or support an expandable prosthetic heart valve therein is disclosed, together with methods of using same. The prosthetic heart valve may be configured to have a generally rigid and/or expansion-resistant configuration when initially implanted to replace a native valve (or other prosthetic heart valve), but to assume a generally expanded form when subjected to an outward force such as that provided by a dilation balloon or other mechanical expander.
Abstract:
A sewing ring for prosthetic heart valves that is connected and configured to pivot outward. A biocompatible fabric covering surrounds at least a portion of the sewing ring, and the ring may be exclusively connected to a stent with the fabric. The sewing ring may be generally planar and of uniform thickness, or may be of varying thickness. The fabric may be used to encompass both the stent and the sewing ring, and may be a single piece. A seam may be provided in the fabric as a discrete pivoting line. The sewing ring may be convertible between bi-stable positions. The ring may extend outward in a frusto-conical shape so as to enable inversion between a position facing the inflow end of the valve and a position facing the outflow end of the valve. A method of implantation, and a method of assembly of the heart valve is also provided.
Abstract:
A prosthetic heart valve for implant in a human. The valve includes a wireform with undulating inflow cusps and outflow commissure posts to which flexible leaflets attach and coapt in a flow area. Each leaflet may drape over the top of the wireform in the cusp area, but have tabs that each extend underneath the wireform at the commissure posts to be secured along with a tab of an adjacent leaflet. The prosthetic heart valve may also be a dual-wire wireform, with the leaflets sandwiched therebetween. One wireform may be larger than the other, with the leaflets extending over the smaller wireform. The smaller wireform may have commissures that bend radially outward from the larger wireform to provide structure to which the leaflet tabs attach.
Abstract:
An articulating implant holder system for heart valve repair or replacement has an implant configured to be secured to a heart valve annulus, an implant holder secured to the implant, an articulating handle assembly comprising a handle, a swivel pivotably secured to the handle at a first location and a connector pivotably secured to the swivel at a second location, an actuating cable secured between the handle and the connector to cause the swivel to move from a first position to a second position, and a latch removably secured to the implant holder. A plurality of sizer heads are configured to correspond to different sizes of heart valve annuluses and each of the plurality of sizer heads has a latching feature. A latching feature of the swivel is configured to removably snap on to the latching feature of each of the plurality of sizer heads and is configured to permanently snap on to the latch.
Abstract:
FIG. 1 is perspective view of a prosthetic valve and holder; FIG. 2 is a front view of the prosthetic valve and holder of FIG. 1; FIG. 3 is a back view of the prosthetic valve and holder of FIG. 1; FIG. 4 is a left side view of the prosthetic valve and holder of FIG. 1; FIG. 5 is a right side view of the prosthetic valve and holder of FIG. 1; FIG. 6 is a top view of the prosthetic valve and holder of FIG. 1; and, FIG. 7 is a bottom view of the prosthetic valve and holder of FIG. 1. The broken lines in the drawings are for illustrative purposes only and form no part of the claimed design.
Abstract:
A prosthetic heart valve holder system includes a prosthetic heart valve having a base at an inflow end, a plurality of commissure posts extending from the base toward an outflow end, and valve leaflets secured to the commissure posts to permit flow through the heart valve. A deflector is provided at the outflow end having a central hub and a plurality of arms extending from the central hub secured to and covering the tips of respective commissure posts. A valve support body is secured to the base and a post connects the valve support body to the hub of the deflector. The plurality of arms are sufficiently collapsible such that, in a first position, free ends of the arms are located axially between the hub and the valve support body to prevent suture looping during an implant procedure, and in a second position, the hub is located axially between the free ends of the arms and the valve support body to permit removal of the deflector from the outflow side of the valve, through the valve leaflets, to the inflow side of the valve.