Abstract:
Techniques are presented for optimizing secure communications in a network. A first router receives from a second router an encrypted packet with an unknown security association. The first router examines the packet to determine whether the counter value is in a range of predicted counter values. Additionally, a key server is configured to provision routers that are part of a virtual private network. The key server selects a counter value that is part of a security association and calculates a key value. The key server sends the key value together with the security association to enable routers to exchange encrypted packets with each other in the virtual private network using the key value and the security association. The key server increments the counter value to a value within a range of counter values capable of being predicted by the routers.
Abstract:
In an embodiment, a method comprises obtaining a second network address at a computer node, which has been already associated with a first network address and provided first keying information; sending, to a key server computer, an update message that comprises both the first network address and the second network address; using the first keying information to encrypt messages that the computer node sends from the second network address to one or more other members of a group.
Abstract:
A method is provided to anonymize the media access control (MAC) address of a client device. The method involves generating a plurality of media access control (MAC) addresses for use by a client device in a network. Policies are defined that determine which one of the plurality of MAC addresses is to be used by the client device. The plurality of MAC addresses allocated for use by the client device are registered with a management entity in the network.
Abstract:
Multiple authenticated identities for a single wireless association may be provided. First, an Access Point (AP) may provide an association with a client device. The AP may then establish, on the association, a first authenticated session for the client device based on a first media access control (MAC) address and a first identity. Next, the AP may establish, on same the association, a second authenticated session for the client device based on a second MAC address and a second identity.
Abstract:
Multiple authenticated identities for a single wireless association may be provided. First, an Access Point (AP) may provide an association with a client device. The AP may then establish, on the association, a first authenticated session for the client device based on a first media access control (MAC) address and a first identity. Next, the AP may establish, on same the association, a second authenticated session for the client device based on a second MAC address and a second identity.
Abstract:
Presented herein are techniques in which one or more network devices can use information provided by a special purpose network connected device to retrieve a usage profile (i.e., configuration file) associated with the special purpose network connected device. The retrieved usage profile, which includes/describes preselected (predetermined) usage descriptions associated with the special purpose network connected device, can then be used to configure one or more network devices. For example, the predetermined usage descriptions associated with the special purpose network connected device can be instantiated and enforced at a network device or the predetermined usage descriptions can be used for auditing the special purpose network connected device (e.g., monitoring of traffic within the network).
Abstract:
A network device receives packets for one or more traffic flows to be sent into a network. The network device computes a flow identifier for each of the one or more traffic flows based on information contained in one or more headers of the packets for each of the one or more traffic flows and based on at least one value that is changed on an ongoing basis. The packets for each of the one or more traffic flows are encrypted to produce encrypted packets for each of the one or more traffic flows. An encapsulation is added to the encrypted packets for the one or more traffic flows. The flow identifier is included in a field of the encapsulation for a corresponding traffic flow.
Abstract:
Techniques are presented for optimizing secure communications in a network. As disclosed herein, a key server is configured to provision a plurality of routers that are part of a virtual private network. The key server selects a counter value that is part of a security association and calculates a key value. The key server sends the key value, together with the security association, to the plurality of routers that are part of the virtual private network to enable them to exchange encrypted packets with each other in the virtual private network using the key value and the security association. The key server then increments the counter value to a value within a range of counter values capable of being predicted by the plurality of routers that received the key value.
Abstract:
First and second nested virtual private networks share a common rekey service. A first key server generates first cryptographic keys and policies for use by gateways of the VPN to encrypt and decrypt data packets. The key server establishes a connection with a second key server to generate second cryptographic keys and policies independently of the first key server for use by encryption units of a second VPN that is nested with and operates independently of the first VPN. The first key server refreshes the first cryptographic keys in the first VPN gateways using a common rekey service, and cooperates with the second key server to refresh the second cryptographic keys in the second VPN encryption units using the common rekey service.
Abstract:
First and second nested virtual private networks share a common rekey service. A first key server generates first cryptographic keys and policies for use by gateways of the VPN to encrypt and decrypt data packets. The key server establishes a connection with a second key server to generate second cryptographic keys and policies independently of the first key server for use by encryption units of a second VPN that is nested with and operates independently of the first VPN. The first key server refreshes the first cryptographic keys in the first VPN gateways using a common rekey service, and cooperates with the second key server to refresh the second cryptographic keys in the second VPN encryption units using the common rekey service.