Abstract:
The present invention provides a method for determining concentration of blood glucose by using the change in the rising time. The chemical reaction between the blood glucose and enzyme within the test strip to generate the analog source that used to determine the concentration of the blood glucose in the measuring meter. Thus, the rising curve can be obtained after the analog source is treated, such that the concentration of the blood glucose can be determined.
Abstract:
A method of reducing memory requirement in the compensation memory unit of a scanner. The method includes providing an even compensation data value and an odd compensation data value and averaging the two to produce an odd-even compensation data value. Only half as much memory space is required to hold the averaged odd-even compensation data values.
Abstract:
A method of automatically adjusting sharpening weighting value in an image sharpening process is disclosed. The method utilizes scanning a correction board having a black reference region, a white reference region and a plurality of line pair regions to aid the calculations of the modulation transfer function value and noise value. The method automatically adjusts weighting values of a sharpening function and avoids accompanying noise increase simultaneously in an image sharpening process performed in an image processing apparatus and thereby high quality images with high signal/noise ratio can be provided.
Abstract:
A control device and a method for controlling scanning speed of a scanner. The control device includes a decision device and a driving device. The decision device further includes an image buffer, an up-down counter and a comparator. The decision device receives the input image data and utilizes the up-down counter to compute data access volume inside the image buffer. The comparator decides whether to increase or decrease the scanning speed according to the data access volume and also outputs decision data to the driving device.
Abstract:
A single step multi-section exposure scanning method for a scanner. The scanner includes a photo-sensor and a stepper motor. The photo-sensor has N rows of sensor cells that correspond to each primary color. The scanning device is driven forward an exposure distance for each revolution of the stepper motor. The single step multi-section exposure scanning method includes the following steps. First, the photo-sensor moves forward one exposure distance. One row of sensor cells is exposed after moving every 1/Nth of the exposure distance. Thereafter, analogue voltages obtained through the exposed row of sensor cells are transmitted to an analogue/digital converter. The above process is repeated until the entire document is scanned.
Abstract:
A method for determining a response of each probe zone on a test strip is provided. The present invention selects an average pixel value of each section of reference white respectively adjacent to the image of a target line to serve as a reference for determining a color response of the target line. When the color response is not less than a predetermined value, representing the target line has a positive response in response to a specific component of a tested solution tested by the test strip, and the specific component is present in the tested solution. The content of the specific component is proportional to the color response. When the color response is less than a predetermined value, representing the target line has a negative response in response to the specific component of the tested solution, and the specific component is absent in the tested solution.
Abstract:
The present disclosure provides a repeated sampling method for image scanning. In one or more embodiments, the sampling method may comprise a sample treatment procedure for the data of an image scanning device during the scanning of an image. The method may comprise sampling, sorting, eliminating one or more group-departing values, and getting a mean value, etc. The sampling procedure may involve scanning a single point of the image several times to produce several sets of sampling values. The sorting procedure may involve sorting the several sets of sampling values after being sampled according to their magnitude. The eliminating group-departing values procedure may involve obtaining the relatively larger values and relatively smaller values from the several sets of sampling values after being sorted. The getting mean value procedure may involve obtaining a mean value from the several sets of sampling values. By applying the repeated sampling method the error of data pick-up during the procedure of scanning may be reduced.
Abstract:
A method for differentiating dynamic range of image is disclosed. The method comprises the following steps. First of all, pixel numbers with the same level value of Density units Dn-1 and Dn are compared. Next the minimum pixel number of each level value of Density units Dn-1 and Dn are counted. Then the minimum pixel numbers of each level value of Density units Dn-1 and Dn are summed. Next the ratio of total minimum pixel number and total pixel number R and a specification value Rs are compared. Then whether R is smaller than Rs or not is determined so as to recognize whether Density units Dn-1 and Dn could be differentiated or not.
Abstract:
A method for recognizing abnormal image is disclosed. The invention utilizes level comparisons of adjacent image lines to determine if there is any abnormal image amid an image picture and whether the abnormal image belongs to shading or LBB. The method comprises the following steps. First of all, two adjacent image lines having level values Pi and Pi−1 are selected. Then an absolute value of the Pi and the Pi−1 is calculated. Next the absolute value is compared with a value X. When the absolute value is smaller than X, then the image lines are determined as normal. On the contrary, when the absolute value is larger than X, then at least one of the image lines is determined as abnormal. Moreover, another two image lines having level values Pi+1 and Pi−2 separately adjacent the image lines having level values Pi and the Pi−1 are selected. An absolute value of the Pi+1 and the Pi−2 is calculated and the absolute value of the Pi+1 and the Pi−2 is compared to the value X. When the absolute value of the Pi+1 and the Pi−2 is smaller than X, then the image lines having level values Pi and Pi−1 are determined as shading. However, when the absolute value of the Pi+1 and the Pi−2 is larger than X, then the image lines having level values Pi, Pi−1, Pi+1 and Pi−2 are determined as LBB.
Abstract:
A method for differentiating dynamic range of image is disclosed. The method comprises the following steps. First of all, pixel numbers with the same level value of Density units D.sub.n−1 and D.sub.n are compared. Next the minimum pixel numbers of each level value of Density units D.sub.n−1 and D.sub.n are counted. Then the minimum pixel numbers of each level value of Density units D.sub.n−1 and D.sub.n are summed. Next the ratio of total minimum pixel number and total pixel number R and a specification value R.sub.s are compared. Then whether R is smaller than R.sub.s or not is determined so as to recognize whether Density units D.sub.n−1 and D.sub.n could be differentiated or not.