Abstract:
Techniques for provisioning multicast chains in a cloud-based environment are described herein. In an embodiment, an orchestration system sends a particular model of a distributed computer program application comprising one or more sources, destinations, and virtualized appliances for initiation by one or more host computers to a software-defined networking (SDN) controller. The SDN controller determines one or more locations for the virtualized appliances and generates a particular updated model of the distributed computer program application, the updated model comprising the one or more locations for the virtualized appliances. The SDN controller sends the updated model of the distributed computer program application to the orchestration system. The orchestration system uses the particular updated model to generate a mapping of virtualized appliances to available host computers of the one or more host computers based, at least in part, on the particular updated model of the distributed computer program application. Using the mapping of virtualized appliances to available host computers, the orchestration system sends instructions for initiating the virtualized appliances on the available host computers to one or more cloud management systems.
Abstract:
Presented herein are techniques for use in a network environment that includes one or more service zones, each service zone including at least one instance of an in-line application service to be applied to network traffic and one or more routers to direct network traffic to the at least one service, and a route target being assigned to a unique service zone to serve as a community value for route import and export between routers of other service zones, destination networks or source networks via a control protocol. An edge router in each service zone or destination network advertises routes by its destination network prefix tagged with its route target. A service chain is created by importing and exporting of destination network prefixes by way of route targets at edge routers of the service zones or source networks.
Abstract:
A method is provided in one example embodiment and may include determining at a parent content node that a plurality of recipient content nodes are to receive a same content; generating, based on a determination that the same content is available at the parent content node, a multi-delivery header comprising a plurality of identifiers, wherein each identifier of the plurality of identifiers indicates each recipient content node that is to receive the same content; appending the multi-delivery header to one or more packets of an Internet Protocol (IP) flow associated with the same content; and transmitting packets for the IP flow to each of the plurality of the recipient content nodes.
Abstract:
An example method is provided in one example embodiment and can include obtaining, within a radio access network, a channel state for a data channel associated with a mobile terminal; including the channel state in a differentiated services (diffserv) marking within an Internet Protocol (IP) header of at least one IP packet associated with the mobile terminal; and transmitting the at least one IP packet including the IP header having the diffserv marking toward a packet data network.
Abstract:
A method is provided in one example embodiment and includes receiving at a network element an encapsulated packet including an encapsulation header, in which the encapsulation header includes an Analytics Proxy Function (“APF”) flag; determining whether the APF flag is set to a first value; if the APF flag is set to the first value, forwarding the encapsulated packet to a local APF instance associated with the network element, in which the encapsulated packet is processed by the local APF instance to replicate at least a portion of the encapsulated packet, construct a record of the encapsulated packet, or both; and if the APF flag is not set to the first value, omitting forwarding the encapsulated packet to the local APF instance associated with the network element. The local APF instance is implemented as a service function anchored at the forwarding element.
Abstract:
In an embodiment, a method is provided for enabling in-band data exchange between networks. The method can comprise receiving, by a first enveloping proxy located in the first network, at least one regular secure sockets layer (SSL) record for a SSL session established between a client and a server; receiving the data from a network element located in the first network; encoding the data into at least one custom SSL record; and transmitting the at least one regular SSL record and the at least one custom SSL record to an enveloping proxy. In another embodiment, a method can comprise receiving at least one regular secure sockets layer (SSL) record and at least one custom SSL record for a SSL session established between a client and a server; extracting the data from the at least one custom SSL; transmitting the at least one regular SSL record.
Abstract:
In an embodiment, a method is provided for enabling in-band data exchange between networks. The method can comprise receiving, by a first enveloping proxy located in the first network, at least one regular secure sockets layer (SSL) record for a SSL session established between a client and a server; receiving the data from a network element located in the first network; encoding the data into at least one custom SSL record; and transmitting the at least one regular SSL record and the at least one custom SSL record to an enveloping proxy. In another embodiment, a method can comprise receiving at least one regular secure sockets layer (SSL) record and at least one custom SSL record for a SSL session established between a client and a server; extracting the data from the at least one custom SSL; transmitting the at least one regular SSL record.
Abstract:
An example method for distributed network address and port translation (NAPT) for migrating flows between service chains in a network environment is provided and includes distributing translation state for a flow traversing the network across a plurality of NAPT service nodes in the network, with packets belonging to the flow being translated according to the translation state, associating the flow with a first service chain at a flow classifier in the network, and updating the association when the flow migrates from the first service chain to a second service chain, with packets belonging to the migrated flow also being translated according to the translation state. The method may be executed at a pool manager in the network. In specific embodiments, the pool manager may include a distributed storage located across the plurality of NAPT service nodes.
Abstract:
A method provided in one embodiment includes receiving a first data packet of a data flow at a first classifier in which the first data packet includes a first identifier. The method further includes determining a second classifier associated with the first identifier in which the second classifier is further associated with at least one service chain of a service chain environment. The method still further includes forwarding the first data packet to the second classifier. The second classifier is configured to receive the first data packet, determine a particular service chain of the at least one service chain to which the first data packet is to be forwarded, and forward the first data packet to the particular service chain.
Abstract:
In an embodiment, a method is provided for enabling in-band data exchange between networks. The method can comprise receiving, by a first enveloping proxy located in the first network, at least one regular secure sockets layer (SSL) record for a SSL session established between a client and a server; receiving the data from a network element located in the first network; encoding the data into at least one custom SSL record; and transmitting the at least one regular SSL record and the at least one custom SSL record to an enveloping proxy. In another embodiment, a method can comprise receiving at least one regular secure sockets layer (SSL) record and at least one custom SSL record for a SSL session established between a client and a server; extracting the data from the at least one custom SSL; transmitting the at least one regular SSL record.