Abstract:
A manufacturing method of a template includes: providing a base; forming a photoresist pattern on the base and patterning the base by using the photoresist pattern as a mask, and the forming the photoresist pattern includes: forming a plurality of first patterns spaced apart from each other on the base; forming a first material layer on the plurality of first patterns; patterning the at least one first pattern by using the first material layer as a mask so that the first pattern is formed into at least one first sub-pattern; and removing the first material layer; and the first material layer at least cover one side of at least one of the plurality of first patterns in a direction perpendicular to a surface on which the base is located.
Abstract:
The present disclosure provides a display substrate, a fabricating method thereof, and a display device. The method includes forming a light shielding layer on a surface of a base substrate, and forming a plurality of thin film transistors on a side of the light shielding layer away from the base substrate. Forming a plurality of thin film transistors on a side of the light shielding layer away from the base substrate includes forming a semiconductor layer at a position where an active layer is to be formed in each of the plurality of thin film transistors, generating heat using the light shielding layer, and utilizing the heat to crystallize the semiconductor layer.
Abstract:
The embodiments of the present disclosure provide a bonding device for a chip on film and a display panel and a bonding method for the same. The bonding device includes: a bearing stage having a horizontal bearing surface for supporting at least one row of display panels, wherein one row of the at least one row of display panels has a row of first bonding regions; a grasping unit disposed above the bearing stage and configured to grasp at least a partial area of the entire chip on film so that a row of second bonding regions of the entire chip on film is horizontally located above the one row of display panels; and a bonding unit configured to bond the row of second bonding regions which has been aligned with the row of first bonding regions to the row of first bonding regions.
Abstract:
A dual-mode liquid crystal display device, a color filter substrate and an array substrate are provided. The display device comprises: a color filter substrate, an array substrate assembled with the color filter substrate, and a liquid crystal layer between the color filter substrate and the array substrate. The pixel area of the array substrate comprises red, green, blue and white sub-pixels; and the color filter substrate or the array substrate is provided with a fluorescent layer at the position corresponding to the white sub-pixels.
Abstract:
The present disclosure discloses a rotary evaporation source apparatus for OLED evaporation, comprising a crucible for containing evaporation material, an evaporation source body for heating the crucible, a rotary disk for rotating the crucible, and a driving source member for driving the rotary disk to rotate; wherein the evaporation source body is provided with a receiving space for receiving the crucible therein, a through hole is disposed on the rotary disk, the rotary disk is movably laid over the evaporation source body, the crucible passes through the through hole disposed on the rotary disk and is placed in the receiving space, the crucible and the rotary disk are disposed in a relatively stationary manner; the driving source member is disposed at outside of the evaporation source body and drives the rotary disk to rotate about a central axis of the evaporation source body, the crucible rotates about the central axis of the evaporation source body along with the rotary disk.
Abstract:
The embodiments of the present disclosure provide a bonding device for a chip on film and a display panel and a bonding method for the same. The bonding device includes: a bearing stage having a horizontal bearing surface for supporting at least one row of display panels, wherein one row of the at least one row of display panels has a row of first bonding regions; a grasping unit disposed above the bearing stage and configured to grasp at least a partial area of the entire chip on film so that a row of second bonding regions of the entire chip on film is horizontally located above the one row of display panels; and a bonding unit configured to bond the row of second bonding regions which has been aligned with the row of first bonding regions to the row of first bonding regions.
Abstract:
A dual-mode liquid crystal display device, a color filter substrate and an array substrate are provided. The display device comprises: a color filter substrate (10), an array substrate (20) assembled with the color filter substrate (10), and a liquid crystal layer (30) between the color filter substrate (10) and the array substrate (20). The pixel area of the array substrate (20) comprises red, green, blue and white sub-pixels; and the color filter substrate (10) or the array substrate (20) is provided with a fluorescent layer at the position corresponding to the white sub-pixels.