Abstract:
Some embodiments provide an image editing application with a novel color modification slider tool. In some embodiments, this tool adjusts one or more color attributes (e.g., one or more color channels) of different pixels differently when moved in one direction, and adjusts one or more color attributes of the same pixel differently when moved in another direction. The movement of this tool is in a straight line in some embodiments, while it is along an angular arc (e.g., along the circumference of a full or partial circle or elliptical shape) in other embodiments. This tool in some embodiments is a novel saturation tool that produces non-photorealistic effects by treating differently the highly saturated and lowly saturated pixels of an image. Specifically, in some embodiments, the saturation tool performs either (1) a positive de-saturation effect that de-saturates the low saturated pixels of an image while enhancing the saturation of the high saturated pixels, or (2) a negative de-saturation effect that de-saturates the high saturated pixels of the image while leaving intact or slightly modifying the saturation level of the lowly saturated pixels. For an original image that has some saturated pixels, both these effects produce grey looking images but the first effect has more saturated pixels and hence looks a bit more non-photorealistic because of it contains grey and colorful pixels.
Abstract:
Some embodiments provide a novel user interface (UI) tool that is a unified slider control, which includes multiple sliders that slide along a region. The region is a straight line in some embodiments, while it is an angular arc in other embodiments. In some embodiments, the unified slider control is used in a media editing application to allow a user to modify several different properties of the image by moving several different sliders along the region. Each slider is associated with a property of the image. A position of the slider in the region corresponds to a value of the property associated with the slider.
Abstract:
Some embodiments of the image editing and organizing application described herein provide a multi-stage automatic enhancement process. The process takes an input image and feeds it through multiple different enhancement operations. The multiple enhancement operations of some embodiments are carried out in a particular order. In some embodiments, the particular order starts with exposure adjustment, then a white balance adjustment, then a vibrancy adjustment, then a tonal response curve adjustment, then a shadow lift adjustment.
Abstract:
Techniques are disclosed to provide user control over the manipulation of a digital image. The disclosed techniques enable a user to apply various textures that mimic traditional artistic media to a selected image. User selection of a texture level results in the blending of texturized versions of the selected image in accordance with the selected texture level. User selection of a color level results in the adjustment of color properties of the selected image that are included in the output image. Control of the image selection, texture type selection, texture level selection, and color level selection may be provided through an intuitive graphical user interface.
Abstract:
Some embodiments provide a method for color balancing an image. The method receives a first selection of a first mode of a color balance tool that includes several different color balance modes. Each color balance mode is for applying color balance operations to the image. The method uses the first mode of the color balance tool to apply a first set of color balance operations to the image. The method receives a second selection to switch from the first mode to a second mode of the color balance tool. The method uses the second mode of the color balance tool to apply a second set of color balance operations to the image.
Abstract:
A method and apparatus for generating a grayscale image. The method and apparatus receive a single value. From the single value, the method and apparatus generate a set of grayscale weighting values. The method and apparatus generate the grayscale based on a color image and the set of grayscale weighting values. By limiting the number of values to a single value, the method and apparatus prevents a user from arbitrarily selecting a number of possible weighting values which could result in a grayscale image that is too dim or too bright. This single control method and apparatus quickly and efficiently produces a grayscale image that is neither too bright nor too dim.
Abstract:
A method includes obtaining a speech proficiency value indicator indicative of a speech proficiency value associated with a user of the electronic device. The method further includes in response to determining that the speech proficiency value satisfies a threshold proficiency value: displaying training text via the display device; obtaining, from the audio sensor, speech data associated with the training text, wherein the speech data is characterized by the speech proficiency value; determining, using a speech classifier, one or more speech characterization vectors for the speech data based on linguistic features within the speech data; and adjusting one or more operational values of the speech classifier based on the one or more speech characterization vectors and the speech proficiency value.
Abstract:
A method includes, while displaying a first set of text content via a display device, determining an engagement value that characterizes a level of user engagement with respect to the first set of text content. The method includes, in accordance with a determination that the engagement value satisfies a threshold, replacing the first set of text content with a second set of text content via the display device. The first set of text content is different from the second set of text content. The method includes in accordance with a determination that the engagement value does not satisfy the threshold, maintaining display of the first set of text content via the display device.
Abstract:
A method includes obtaining user input interaction data. The user input interaction data includes one or more user interaction input values respectively obtained from the corresponding one or more input devices. The user input interaction data includes a word combination. The method includes generating a user interaction-style indicator value corresponding to the word combination in the user input interaction data. The user interaction-style indicator value is a function of the word combination and a portion of the one or more user interaction input values. The method includes determining, using a semantic text analyzer, a semantic assessment of the word combination in the user input interaction data based on the user interaction-style indicator value and a natural language assessment of the word combination. The method includes generating a response to the user input interaction data according to the user interaction-style indicator value and the semantic assessment of the word combination.
Abstract:
Some embodiments provide a novel method for tempering an adjustment of an image to account for prior adjustments to the image. The adjustment in some embodiments is an automatic exposure adjustment. The method performs an operation for a first adjustment on a first set of parameters (e.g., saturation, sharpness, luminance). The method compares the first set of parameters to a second set of parameters to produce a third set of parameters that expresses the difference between the first adjustment and a second adjustment. The method performs a third operation to produce an adjusted image. The first set of parameters quantify a set of prior adjustments to the image by an image capturing device when the image was captured in some embodiments. The second set of parameters is a set of target parameters. The third set of parameters specify the tempered adjustment of the image.