Abstract:
Methods and devices are provided for allowing a mobile device (e.g., a key fob or a consumer electronic device, such as a mobile phone, watch, or other wearable device) to interact with a vehicle such that a location of the mobile device can be determined by the vehicle, thereby enabling certain functionality of the vehicle. A device may include both RF antenna(s) and magnetic antenna(s) for determining a location of a mobile device relative to the vehicle. Such a hybrid approach can provide various advantages. Existing magnetic coils on a mobile device (e.g., for charging or communication) may be re-used for distance measurements that are supplemented by the RF measurements. Any device antenna may provide measurements to a machine learning model that determines a region in which the mobile device resides, based on training measurements in the regions.
Abstract:
Embodiments disclosed herein relate to reducing a power consumption of an electronic device while maintaining some functionality of the electronic device while the electronic device is in a low power mode. The device may be in the low power mode due to a battery level being below a threshold. If the battery level is below the threshold, the electronic device may enter the low power mode. However, before entering the low power mode, some functionality of an application processor may be transferred to a communication controller. Once the functionality is transferred, the application processor may be disabled to reduce power consumption while maintaining functionality of the application processor. The electronic device may also utilize various communication protocols to communicate with a peripheral device. Even though the electronic device may be in the low power mode, the communication controller may be used to cause the peripheral device to perform various actions.
Abstract:
Certain embodiments are directed to techniques (e.g., a device, a method, a memory or non-transitory computer readable medium storing code or instructions executable by one or more processors) for passive beacon communication techniques. Transmitting devices (e.g., beacons) can transmit advertising messages using a first wireless protocol to provide timing for ranging messages for one of more ranging messages over a second protocol (e.g., UWB). One or more receiving devices can determine using signal strength if the devices are within a threshold range to perform communication techniques. Various ranging communications techniques can be used to determine a range between the receiving device and transmitting device. Other techniques can be used to passively calculate the angle of arrival for transmitter signals. The angle of arrival information can be used for precise position locating for the receiving device or to indicate interest in information provided by the one or more transmitting devices.
Abstract:
An electronic device may receive a first signal from a first transmitting device at a first time. The electronic device may receive a second signal from a second transmitting device at a second time. The electronic device may access location information for the first transmitting device and the second transmitting device. The electronic device may receive a message from a second electronic device having a known distance relationship to the first transmitting device and the second transmitting device, wherein the second electronic device is configured to receive the first signal, the second signal, and the message including timing information of the signals. The electronic device may determine the position of the electronic device using the location information and the timing information, wherein the position is dependent on the known distance relationship.
Abstract:
An electronic device may use information about the location of nearby devices to make sharing with those devices more intuitive for a user. The electronic device may include control circuitry, wireless circuitry including first and second antennas, and motion sensor circuitry. The control circuitry may determine the location of a nearby electronic device by calculating the angle of arrival of signals that are transmitted by the nearby electronic device. To obtain a complete, unambiguous angle of arrival solution, the electronic device may be moved into different positions during angle of arrival measurement operations. At each position, the control circuitry may calculate a phase difference associated with the received signals. Motion sensor circuitry may gather motion data as the electronic device is moved into the different positions. The control circuitry may use the received antenna signals and the motion data to determine the complete angle of arrival solution.
Abstract:
Certain embodiments are directed to techniques (e.g., a device, a method, a memory or non-transitory computer readable medium storing code or instructions executable by one or more processors) for passive beacon communication techniques. Transmitting devices (e.g., beacons) can transmit advertising messages using a first wireless protocol to provide timing for ranging messages for one of more ranging messages over a second protocol (e.g., UWB). One or more receiving devices can determine using signal strength if the devices are within a threshold range to perform communication techniques. Various ranging communications techniques can be used to determine a range between the receiving device and transmitting device. Other techniques can be used to passively calculate the angle of arrival for transmitter signals. The angle of arrival information can be used for precise position locating for the receiving device or to indicate interest in information provided by the one or more transmitting devices.
Abstract:
A mobile device can include ranging circuitry to determine distance to another mobile device. A first wireless protocol can establish an initial communication session to perform authentication and/or exchange ranging settings. A second protocol can perform ranging, and other wireless protocols can transmit content. In one example, the distance information can be used to display a relative position of another device on a user interface of a sending device. The user interface can allow a user to quickly and accurately select the recipient device for sending the data item. As other example, the distance information obtained from ranging can be used to trigger a notification (e.g., a reminder) to be output from a first mobile device or used to display a visual indicator on a receiving device. Proximity of a device (e.g., as determined by a distance) can be used to suggest recipient for a new communication.
Abstract:
Two different wireless protocols can be used for ranging between a mobile device and an access control system (e.g., a vehicle). The first wireless protocol (e.g., Bluetooth®) can be used to perform authentication of the vehicle and exchange ranging capabilities between a mobile device (e.g., a phone or watch) and the vehicle. The second wireless protocol (e.g., ultra-wideband, UWB) can use a pulse width that is less than a pulse width used by the first wireless protocol (e.g., 1 ns v. 1 μs). The narrower pulse width can provide greater accuracy for distance (ranging) measurements.
Abstract:
Two different wireless protocols can be used for ranging between a mobile device and an access control system (e.g., a vehicle). The first wireless protocol (e.g., Bluetooth®) can be used to perform authentication of the vehicle and exchange ranging capabilities between a mobile device (e.g., a phone or watch) and the vehicle. The second wireless protocol (e.g., ultra-wideband, UWB) can use a pulse width that is less than a pulse width used by the first wireless protocol (e.g., 1 ns v. 1 μs). The narrower pulse width can provide greater accuracy for distance (ranging) measurements.
Abstract:
Position, navigation and/or timing (PNT) solutions may be provided with levels of precision that have previously and conventionally been associated with carrier phase differential GPS (CDGPS) techniques that employ a fixed terrestrial reference station or with GPS PPP techniques that employ fixed terrestrial stations and corrections distribution networks of generally limited terrestrial coverage. Using techniques described herein, high-precision PNT solutions may be provided without resort to a generally proximate, terrestrial ground station having a fixed and precisely known position. Instead, techniques described herein utilize a carrier phase model and measurements from plural satellites (typically 4 or more) wherein at least one is a low earth orbiting (LEO) satellite. For an Iridium LEO solution, particular techniques are described that allow extraction of an Iridium carrier phase observables, notwithstanding TDMA gaps and random phase rotations and biases inherent in the transmitted signals.