Abstract:
A combined cycle electric power plant includes gas and steam turbines and steam generators and a digital/analog control system. In the control system, an automatic digital computer control generates position setpoints for the gas turbine fuel valves and the steam turbine inlet valves to control turbine speed and load. A synchronizer system includes an automatic synchronizer subsystem and a manual synchronizer subsystem. The automatic synchronizer subsystem includes a sequencer which is largely embodied in the digital computer and it further includes a synchronizer which is external to the automatic control. The automatic sequencer connects the synchronizer to synchronize the three generators in a sequence which depends on the startup and loading operation of the turbines, the synchronization operation of the synchronizer and the operation of the breakers. The manual synchronizer subsystem responds to operator inputs to generate a speed reference for the synchronization of each turbine. The synchronization system further includes logic structure needed to permit synchronization to occur and to define the synchronization mode. Turbine speed changes are initiated by the speed/load control under synchronizer system control.
Abstract:
A combined cycle electric power plant includes gas and steam turbines and a steam generator for recovering the heat in the exhaust gases exited from the gas turbine and for using the recovered heat to produce and supply steam to the steam turbine. The steam generator includes a superheater tube through which a fluid, e.g. water, is directed to be additionally heated into superheated steam by the exhaust gas turbine gases. An afterburner further heats the exhaust gas turbine gases passed to the superheater tube. The temperature of the gas turbine exhaust gases is sensed for varying the fuel flow to the afterburner by a fuel valve, whereby the temperatures of the gas turbine exhaust gases and therefore of the superheated steam, are controlled. Further, override signals are generated to prevent the temperature of the superheated steam from falling below a predetermined minimum level and for preventing the temperature and pressure of the superheated steam from exceeding maximum levels.
Abstract:
In a turbine power plant, fluid hydrocarbon fuel is first cracked with steam under pressure; the cracked compressed gas is then expanded in a gas turbine to perform work and thereafter burned in a boiler to generate steam to drive a steam turbine. The cracked, compressed gas may also be expanded to an intermediate pressure in a gas turbine to perform work, combusted under pressure, the combusted, compressed gas expanded in a second gas turbine to perform work and then fed to a boiler where the heat of the combusted gas is utilized to generate steam to drive a steam turbine. The cracked, compressed gas may also be fully expanded in a gas turbine to perform work and thereafter combusted and a portion of the hot combustion gas therefrom is fed to a boiler to generate steam to drive a steam turbine and the balance is recycled to an externally heated cracker and then to the boiler.
Abstract:
TWO WORM SHAFTS, EACH HAVING A DRIVING CONNECTING TO AN ENGINE, ARE MOUNTED PARALLEL TO A SHIFT ROD WHICH IS MOVABLE TO CHANGE THE SPEED OF THE SLEEVE ENGINE. A ROTATABLE MEMBER IS MOUNTED ON THE SHIFT ROD AND HAS WORM GEARS AT EITHER END ENGAGED WITH A RESPECTIVE WORM SHAFT. A FRICTION CLUCTH IS ASSOCIATED WITH EACH OF THE WORM SHAFTS TO PREVENT IMPARTING A MOTION TO THE ROTAT-
ABLE MEMBER WHEN THE SHIFT ROD IS HELD AGAINST MOVEMENT. A SOLENOID-OPERATED LOCK MECHANISM IS SELECTIVELY OPERABLE TO LOCK THE SHIFT ROD AGAINST MOVEMENT AND RENDER THE APPARATUS INOPERATIVE.
Abstract:
A system and method are provided for storing and recovering electricity generated from conventional/renewable energy sources. A thermal energy storage vessel contains thermal storage fluid (“TSF”) comprising a eutectic ternary nitrate molten salt, induction heating elements, turbine pumps, a heat exchanger, and various data acquisition sensors like thermocouples and thermistors. The immersion heating elements receive the electricity generated from conventional and/or renewable energy source to heat the eutectic ternary nitrate molten salt to the desired temperature. Coiled tubing is deployed within the thermal containment vessel to be distribution systems for the power cycle working gas and heat exchange for the power cycle working gas. The power cycle working gas is delivered under pressure to a steam turbine. The turbine converts the energy into mechanical shaft work to drive an electricity generator to produce electricity. The steam exhaust is gathered by a compressor and returned to the thermal energy storage vessel.
Abstract:
Processes for generating electric power are provided. The processes involve combining a supercritical water stream with a pressurized, heated hydrocarbon-based composition in a mixing device to create a combined feed stream. The combined feed stream is introduced to a supercritical reactor to produce an upgraded product. The upgraded product is depressurized and separated. The upgraded product may be separated into a light and heavy fraction where the light may be introduced to a gas turbine to generate electric power and the heavy fraction may be introduced to a boiler to generate electric power, or both. Alternatively, the depressurized upgraded product may be further separated to produce a fuel oil fraction comprised of cutterstock and a heavy fraction which may be passed to a boiler to generate electric power, and a light fraction, which may be passed to a gas turbine system to generate electric power, or both.
Abstract:
Gas turbine unit (GTV) provides compressed air and steam methane-hydrogen mixture to a combustion chamber to enrich combustion products and cooling by evaporation or superheating of water steam. The temperature of heat exchange processes of the gas turbine unit is increased by additional fuel combustion in the steam-methane-hydrogen mixture postcombustion flow extracted at the output from the additional free work gas turbine, and before supply of steam-methane-hydrogen mixture to the combustion chamber it is previously cooled to the temperature of 200+240° C. with simultaneous differential condensation of water steam. The condensate is processed for preparation of methane steam-gas mixture and low pressure water steam which is passed through the additional free work gas turbine.
Abstract:
Systems and methods are provided for the recovery mechanical power from heat energy sources using a common working fluid comprising, in some embodiments, an organic refrigerant flowing through multiple heat exchangers and expanders. The distribution of heat energy from the source may be portioned, distributed, and communicated to each of the heat exchangers so as to permit utilization of up to all available heat energy. In some embodiments, the system utilizes up to and including all of the available heat energy from the source. The expanders may be operatively coupled to one or more generators that convert the mechanical energy of the expansion process into electrical energy, or the mechanical energy may be communicated to other devices to perform work.