Abstract:
The tuned circuit of an oscillator includes n metal-insulatorsemiconductor (MIS) diodes. The oscillator frequency may be switched, in discrete steps, to any one of 2n different values in response to n control voltages, representing an n bit binary word, applied to the respective diodes.
Abstract:
One embodiment of the present invention relates to a digital controlled oscillator. The oscillator includes an oscillator circuit, a varactor array, and a control circuit. The oscillator circuit receives a control word and a signal and generates an oscillator clock signal from the signal at a frequency selected by the control word. The varactor array has a first array of varactor cells having incremental capacitance values and a second array of varactor cells having equal capacitance values. The split varactor array provides a capacitance value. A control circuit is coupled to the oscillator circuit and controls the split varactor array according to the control word. The control circuit sets varactor cells of the split varactor array on or off.
Abstract:
A novel testing mechanism operative to test large capacitor arrays such as those used in a digitally controlled crystal oscillator (DCXO). The invention is adapted for use in DCXO circuits that employ dynamic element matching in their array decoding circuits. The invention combines the use of DEM during regular operation of the DCXO with a testing technique that greatly reduces the number of tests required. The invention tests the capacitors in the array on a row by row, wherein all the capacitors in a row are tested lumped together and treated as a single entity, which results in significantly reduced testing time. This permits the measurement of significantly higher frequency deviations due to the larger capacitances associated with an entire row of capacitors being tested.
Abstract:
A programmable capacitor bank includes multiple tuning elements. Each tuning element includes two tuning capacitors and a pass transistor that electrically connects or disconnects the capacitors to/from common nodes. For a thermometer decoded capacitor bank, the tuning capacitors for all tuning elements have equal capacitance. Each tuning element further includes at least one pull-up transistor that provides high bias voltage for the pass transistor and at least one pull-down transistor that provides low bias voltage for the pass transistor. The multiple tuning elements may be arranged in a ladder topology such that (1) the tuning elements are turned on in sequential order starting from one end of the ladder and going toward the other end of the ladder and (2) each tuning element receives biasing from a preceding tuning element and provides biasing to a succeeding tuning element. The capacitor bank may be used for VCOs and other circuits.
Abstract:
A programmable capacitor bank includes multiple tuning elements. Each tuning element includes two tuning capacitors and a pass transistor that electrically connects or disconnects the capacitors to/from common nodes. For a thermometer decoded capacitor bank, the tuning capacitors for all tuning elements have equal capacitance. Each tuning element further includes at least one pull-up transistor that provides high bias voltage for the pass transistor and at least one pull-down transistor that provides low bias voltage for the pass transistor. The multiple tuning elements may be arranged in a ladder topology such that (1) the tuning elements are turned on in sequential order starting from one end of the ladder and going toward the other end of the ladder and (2) each tuning element receives biasing from a preceding tuning element and provides biasing to a succeeding tuning element. The capacitor bank may be used for VCOs and other circuits.
Abstract:
A method and apparatus for digitally controlling the capacitance of an integrated circuit device using MOS-FET devices. In accordance with one aspect of the present invention, a one-bit or “binary” varactor is presented wherein the gate-to-bulk capacitance of the MOS-FET device exhibits dependency to a D.C. voltage applied between its gate and well implant regions. The capacitance-voltage characteristic of the binary capacitor has three major regions: (1) a first relatively flat region having little or no voltage dependency and having a capacitance equal to a first low capacitance of C1; (2) a sloped region wherein a voltage dependency exists; and (3) a second relatively flat region where there is little or no voltage dependency and where the capacitance equals a second higher capacitance of C2. The capacitance of the binary capacitor can be changed from C1 to C2 simply by changing the polarity of the applied D.C. voltage from a positive to a negative value. A plurality of binary capacitors are configured in a parallel arrangement to produce a digitally controlled capacitor. The digitally controlled capacitor can be used in any integrated circuit requiring a tightly controlled tuned network. One application is a voltage-controlled oscillator (VCO) wherein the center output frequency of the VCO is calibrated by digitally modifying the capacitance of the VCO's digitally controlled capacitor. A means for determining whether the VCO requires calibration and a means for calibrating the center output frequency of the VCO is presented.
Abstract:
A fully integrated, adjustable oscillator circuit for use with a crystal is disclosed in which a crystal oscillator, such as a Pierce oscillator, is arranged to utilize a tuning network that includes at least one integrated varactor (voltage-variable-capacitor) as a shunt element for providing at least one type of adjustment of the oscillating signal. More than one type of adjustment can be provided by including a bank of varactors for each of the shunt elements of the tuning network, in which various individual varactors are selected in binary (on-off) fashion to effect digital as well as analog adjustment of the crystal oscillator.
Abstract:
A modified Sallen and key active filter useful for generating tones in a tone generator which can be connected to a telephone line. The modification allows a broad range of frequencies to be generated with a relatively constant output amplitude, the output signal of which can be usefully employed for D.T.M.F. or interoffice multifrequency signal generation.