Abstract:
A speed control system for an induction motor controlled by a converting arrangement coupled with a commutatorless motor which operates without commutation failure notwithstanding wide variations in the speed of the commutatorless motor. The speed control system includes an arrangement for maintaining the value of a direct current signal of the converting arrangement less than the maximum current value for ensuring proper operation of the converting arrangement.
Abstract:
A vehicle is equipped with a main drive system and an electric assist drive system which is actuated by the operator when the vehicle speed falls below some predetermined speed. A prime mover for the vehicle, in addition to driving two wheels directly through a primary transmission, drives a three-phase electrical alternator. The alternator energizes an induction motor with a torque-regulating control system for independently driving two other wheels of the vehicle to provide greater traction at low speeds. The rotor circuit of the induction motor includes a rectifier bridge which feeds a line-commutated inverter for coupling the slip power back to the stator input. The control system determines the firing angle for conduction of the switches in the inverter to control the output torque of the induction motor as a function of speed. The system includes a shaping network which defines the desired speed-torque characteristic for accelerating the vehicle; and it generates a signal representative of a demand torque for a given motor speed. Another circuit sensing rotor current generates a signal representative of the load torque. A comparison circuit receives the two signals representative respectively of the actual torque and the desired torque for that speed; and it generates an error signal for controlling the firing angle of the switches in the inverter circuit such that the motor and vehicle are accelerated along the torque-speed envelope of the shaping network once the assisting system is actuated. Thus, the control system regulates the output torque of the assisting induction motor as a predetermined function of vehicle speed.
Abstract:
A control device (8) for an inverter (2) that feeds an electric machine (3), wherein the control device (8) is configured to provide pulse-width-modulated switching signals (15) at a carrier frequency to drive switching elements (12) of the inverter (2), wherein the control device (8) is configured to ascertain the carrier frequency within at least one operating range (22, 23) depending on a piece of operating point information that describes an operating point defined by a rotation speed and a torque of the electric machine (3) in such a way that the carrier frequency is reduced within the at least one operating range (22, 23) compared to a maximum carrier frequency operating point at which a maximum carrier frequency is specified in the operating range.
Abstract:
A power converter system comprising a power source; a plurality of voltage source converters for driving respective loads; the plurality of voltage converters connected to the power source via a common DC-link, control means (10a, 10b) for driving the voltage source converters by means of respective control signals modulated onto respective modulation carriers; and means for synchronizing the control means such that the respective modulation carriers are interleaved with a selected phase shift therebetween.
Abstract:
A switched resonant power converter applies AC to an induction motor. The power converter controls the magnitude and phase of the motor current, and tuning the stator flux accordingly in order to control the motor speed. A preprocessor operates on a speed command signal by getting the user speed command input to produce amplitude and phase-related signals for application to inputs of the power converter control.
Abstract:
At least one embodiment of the invention generally relates to a drive system for a facility having an alternating-current isolated network, in particular for a ship or an offshore platform, including a three-phase drive machine, which can be operated both as a motor and as a generator, and including a converter having a direct-current intermediate circuit having an intermediate circuit voltage. At least one embodiment of the invention aims to provide a way of avoiding undesired and/or impermissible voltage and/or frequency increases in the alternating-current isolated network. For this purpose, the drive system includes according to the invention an energy absorbing device arranged in the intermediate circuit, which energy absorbing device includes at least one energy absorber, which preferably includes at least one electrical resistor, for absorbing at least a part of the electrical energy that the three-phase drive machine generates in generator operation and outputs to the intermediate circuit by way of the motor-side current converter of the converter. The energy absorber can be activated by the energy absorbing device according to the polarity of the intermediate circuit voltage. The energy absorbing device is preferably variable regarding an absorption of electrical braking power of the three-phase drive machine.
Abstract:
A machine has a housing that includes a plurality of stator coils to be positioned adjacent to a rotor. A switching network includes a plurality of transistors and diodes connected to the coils. A current source inverter is provided by a switching network, a pair of inductors positioned on power rails, and commutating capacitors. The current source inverter and the coils are all positioned within the housing. Power architecture for a vehicle has a source of DC power, which communicates with machines through integrated motor drives. The motor drives include at least three coils positioned adjacent to the rotors for a motor associated with the integrated motor drive. A storage switching network is positioned downstream of the coils, with the storage switching network to be closed to allow power from the coils to drive the rotor, or to be opened to allow power to pass to a local storage component.
Abstract:
A hybrid synchronous motor drive circuit and method operates in one or two or more modes based on the speed of the synchronous machine. In a first mode, the synchronous machine is driven at a relatively low frequency by a current controlled voltage source inverter (VSI). In a second mode, the synchronous machine is driven at a relatively high frequency by a load commutated inverter (LCI) in tandem with the VSI. In the second mode, the LCI acts as the main power source for controlling the machine and determining machine torque and speed. The VSI acts as a harmonic compensator by compensating the dominant harmonic currents fed to the machine from the LCI such that the synchronous machine will see sinusoidal currents and thereby sinusoidal voltages at its terminals. The VSI also functions to provide sufficient reactive power at fundamental frequency so that the thyristors in the inverter are load commutated.
Abstract:
Power conversion systems and methods are provided for driving a plurality of motor loads, in which an autotransformer receives AC input currents and provides a plurality of multiphase outputs at a non-zero phase angle relative to one another, and the individual multiphase outputs are provided to corresponding motor drives with rectifiers to convert the multiphase outputs to DC electrical power, and inverters to convert the DC power to AC to drive corresponding motor loads.
Abstract:
Power conversion systems and control techniques are presented in which a bus transient control component bypasses selected phases of a rectifier during a protective mode of operation to reduce common mode voltages or currents.