Abstract:
A method for mass analyzing multiply-charged ions is provided as well as a mass analyzer suitable for performing the method, the method comprising: introducing multiply-charged ions into an electrostatic mass analyzer where ions undergo multiple changes of direction of motion; detecting the ions in the analyzer; and determining the mass-to-charge ratio of at least some of the detected ions; wherein the absolute velocity in the analyzer of at least some of the ions whose mass-to-charge ratio is determined is not greater than 8,000 m/s and the average path length over the duration of detection of such ions is longer than required for detecting such ions with a mass-to-charge ratio resolving power of 1,000. High resolution mass spectra of high m/z protein complexes, for example in a native state and with low charge, can be achieved.
Abstract:
A method of mass spectral analysis in an analytical electrostatic trap (14) is disclosed. The electrostatic trap (14) defines an electrostatic field volume and includes trap electrodes having static and non-ramped potentials. The method comprises injecting a continuous ion beam into the electrostatic field volume.
Abstract:
The present invention provides a single set of mass spectrometer capable of selectively performing the following two modes of analyses according to the purpose of analysis: the first mass spectrometry mode in which the analysis can be repeated at short intervals of time; and the second mass spectrometry mode in which the analysis can be performed with high mass resolution and high accuracy. In an embodiment of the present invention, ions ejected from an ion source 1 travel along a straight path B, on which gate electrodes 3 are provided. When a voltage is applied from an MS mode selection controller 7 to the gate electrodes 3, the ions are introduced into a loop orbit A. Located on the loop orbit A is a second ion detector 6, which is a nondestructive type of ion detector. Detection signals of the second ion detector 6 are sent to a data processor 9, which extracts flight time spectrum data from those signals and Fourier-transforms those data to convert the time axis to a frequency axis. From the frequency spectrum thus created, the mass-to-charge ratio of each ion is calculated with high accuracy. When no voltage is applied to the gate electrodes 3, the ions ejected from the ion source 1 travel along the straight path B and arrive at a first ion detector 5. This mode of analysis requires only a short period of time and can achieve a high level of time resolution.
Abstract:
The invention relates to mass spectrometers in which ion clouds are stored in two spatial directions by radial forces while oscillating largely harmonically at a mass-specific frequency in a third spatial direction perpendicular to the other two, in a potential minimum, the shape of which is as close to a parabola as possible. Analysis of the oscillation frequencies of these ion clouds, preferably by a Fourier analysis, leads via a frequency spectrum to a mass spectrum. The frequency spectrum is analyzed to identify false signals in the frequency spectrum as harmonics and eliminating them where necessary.
Abstract:
In a time of flight mass spectrometer (TOF-MS) of the present invention, a flight controller makes ions fly a loop orbit a predetermined number of turns, and an ion detector detects the ions at each turn of the flight. A flight time measurer measures the length of flight time of ions of a same mass to charge ratio at every turn, and a data processor constructs a spectrum of flight time. The data processor further computes the Fourier transformation of the spectrum, and determines the mass to charge ratio of the ions based on a frequency peak appearing in the Fourier transformation.
Abstract:
A means and method whereby ions from an ion source can be selected and transferred via a multipole analyzer system in such a way that ions are trapped and analyzed by inductive detection. Ions generated at an elevated pressure are transferred by a pump and capillary system into a multipole device. The multipole device is composed of one analyzing section with two trapping sections at both sides. When the proper voltages are applied, the trapping sections trap ions within the analyzing region. The ions are then detected by two sets of detection electrodes.
Abstract:
A method for trapping of a plurality of charged particles in a charged particle trap. The trap includes first and second electrode mirrors having a common optical axis, the mirrors being arranged in alignment at two extremities thereof. The mirrors are capable, when voltage is applied thereto, of creating respective electric fields defined by key field parameters. The electric fields are configured to reflect charged particles causing their oscillation between the mirrors. The method includes introducing into the trap, along the optical axis, the plurality of charged particles as a beam having pre-determined key beam parameters. The method further includes choosing the key field parameters for at least one of the mirrors such as to induce bunching among charged particles in the beam.
Abstract:
A method of processing an image-charge/current signal representative of one or more ions undergoing oscillatory motion within an ion analyser apparatus. The method comprising obtaining a recording of the image-charge/current signal generated by the ion analyser apparatus in the time domain. By a signal processing unit, the method comprises determining a value for the period of a periodic signal component within the recorded signal. Then, the method includes truncating the recorded signal to provide a truncated signal having a duration substantially equal to an integer multiple of said period. A step of reconstructing a time-domain signal is done based on a selected one or more frequency-domain harmonic components of the truncated signal. Next, the method determines a magnitude of the reconstructed time-domain signal and therewith calculating a value representative of the charge of a said ion undergoing oscillatory motion within the ion analyser apparatus.
Abstract:
A method of processing an image charge/current signal representative of trapped ions undergoing oscillatory motion. The method includes: identifying a plurality of fundamental frequencies potentially present in the image charge/current signal based on an analysis of peaks in a frequency spectrum corresponding to the image charge/current signal in the frequency domain, wherein each candidate fundamental frequency falls in a frequency range of interest; deriving a basis signal for each candidate fundamental frequency using a calibration signal; and estimating relative abundances of ions corresponding to the candidate fundamental frequencies by mapping the basis signals to the image charge/current signal. At least one candidate fundamental frequency is calculated using a frequency associated with a peak that falls outside the frequency range of interest and that has been determined as representing a second or higher order harmonic of the candidate fundamental frequency.
Abstract:
The invention relates to the linear dynamic range of ion abundance measurement devices in mass spectrometers, such as time-of-flight mass spectrometers. The invention solves the problem of ion current peak saturation by producing a second ion measurement signal at an intermediate stage of amplification in a secondary electron multiplier, e.g. a signal generated between the two multichannel plates in chevron arrangement. Because saturation effects are observed only in later stages of amplification, the signal from the intermediate stage of amplification will remain linear even at high ion intensities and will remain outside saturation. In the case of a discrete dynode detector this could encompass, for example, placement of a detection grid between two dynodes near the middle of the amplification chain. The invention uses detection of the image current generated by the passing electrons.