Abstract:
A deployable wing that is folded so as to fit into a carrier such as an airplane that is released and automatically with the aid of parachutes to deploy and fly a given distance without assistance other than steering to reach a given destination and a propeller driven by a gas powered engine is actuated to propel the wing an extended distance. A guard is disposed adjacent to the propeller to assure that the lines of the parachutes do not get tangled into the propeller blades.
Abstract:
A method wherein a propeller driven, hydrazine powered aircraft is remotely piloted through rarefied atmosphere of a selected planet, including the planet Earth, and employed as a communication platform for a telemetry system provided for relaying information relating to features characterizing the surface of the planet.
Abstract:
A method and apparatus for operating an airfoil system. A gas may be generated. The gas may be sent into an inflatable airfoil system comprising an inflatable air foil and a section. The inflatable airfoil may have an inner end and an outer end in which the inflatable airfoil may be comprised of a number of materials that substantially pass electromagnetic waves through the inflatable airfoil. The section may have a number of openings in which the inner end of the inflatable airfoil may be associated with the section. The section may be configured to be associated with a fuselage. The number of openings may be configured to provide communications with an interior of the inflatable airfoil. The section with the number of openings may be configured to reduce reflection of the electromagnetic waves encountering the section.
Abstract:
The present invention is a variable geometry lighter-than-air (LTA) aircraft that is adapted to morph its shape from a symmetric cross-section buoyant craft to an asymmetric lifting body and even to a symmetric zero lift configuration. The basic structure is a semi rigid airship with movable longerons. Movement of the longerons adjusts the camber of the upper and/or lower surfaces to achieve varying shapes of the lifting-body. This transformation changes both the lift and drag characteristics of the craft to alter the flight characteristics. The transformation may be accomplished while the craft is airborne and does not require any ground support equipment.
Abstract:
Methods and apparatus for an adaptable solar airframe are provided herein. In some embodiments, an adaptable solar airframe includes an expandable body having an aerodynamic cross-section that reduces parasitic air drag at any given thickness of the body, further being able to change its shape in flight in response to changes in the relative position of the sun; and a flexible solar PV system attached to the surface of the expandable body.
Abstract:
The invention relates to an automatic takeoff method for an aircraft with a flexible airfoil, comprising a carriage suspended by rigging lines from an airfoil. According to said method: —said carriage is provided with an autopilot controlling actuators that control said rigging lines; —said airfoil is provided with an airfoil attitude sensor, comprising a biaxial accelerometer and a biaxial rate gyro, capable of defining the position of an airfoil reference frame in relation to the ground, and means for communicating with said autopilot; —during takeoff, information is received from said airfoil attitude sensor and transmitted to said autopilot for the purpose of controlling said actuators. The invention also relates to an airfoil for the implementation of said method, comprising an airfoil attitude sensor with an inertial unit with a biaxial accelerometer and a biaxial rate gyro, and means for communicating with an autopilot. The invention further relates to an aircraft comprising such an airfoil.
Abstract:
Methods and apparatus for an adaptable solar airframe are provided herein. In some embodiments, an adaptable solar airframe includes an expandable body having an aerodynamic cross-section that reduces parasitic air drag at any given thickness of the body, further being able to change its shape in flight in response to changes in the relative position of the sun; and a flexible solar PV system attached to the surface of the expandable body.
Abstract:
An aerial delivery system including a ram-air parachute, one or more recovery parachutes, a mantle removably attached to a cargo, and a controller operably connected to the mantle, the ram-air parachute, and the one or more recovery parachutes. The controller may be configured to receive location information associated with a target, receive information related to an ambient condition, determine a recovery parachute opening point based on the target information and the ambient condition, and cause a navigation of the aerial delivery system to the determined recovery parachute opening point.
Abstract:
The proposed UUAV provides a small, agile vehicle that leverages the unique principals of remote controlled model aviation. The UUAV also encompasses an aerodynamically shaped, gas filled wing that can be used to provide buoyancy for lift assistance both through the use of the lighter than air gas and by its aerodynamic shape in forward flight.
Abstract:
A novel design and construction method for an inflatable, rigidizable wing for a terrestrial or planetary flying vehicle. The wing is caused to deploy from an initially packed condition and to assume its functional shape by means of an inflation gas. After inflation, the wing is rigidized by any of several means, such that the inflation gas is no longer required. The composite wing is fabricated from a base reinforcement material, often a fabric, which is coated with a polymer resin that hardens when exposed to a curing mechanism. Several activation mechanisms exist by which to initiate rigidization of such a structure, including elevated temperature, ultraviolet light, and chemical constituents of the inflation gas. The resultant wing has fundamental advantages compared to existing inflatable wings, including improved stiffness, and reduced susceptibility to structural failure in response to puncture.