Abstract:
Techniques for recommending footwear based on scan data describing feet of a user and a variety of other information are described. In some instances, a footwear service may obtain scan data describing feet of a user. The footwear service may process the scan data to generate a 3D representation of the user's feet, such as a 3D model or other representation. The footwear service may also obtain other information about the user, such as user preferences, orthotics data, information identifying an activity that the user participates in and so on. The footwear service may determine a footwear recommendation for the user based on the 3D representation of the user's feet, footwear data describing a footwear item, the user preferences and/or other information.
Abstract:
The pressure-sensitive light and shadow imaging system is comprised of carrier medium (1), inductive surface (2), photo source (3), photocell (5) and imaging surface (6), wherein the said carrier medium (1) is set on the top of the pressure-sensitive light and shadow imaging system, and the lower end contacts with the inductive surface (2) whose lower end is closely integrated with upper surface of the photocell (5). The imaging surface (6) is set underneath the photocell (5). Texture substance (7) contacts the carrier medium (1), which can form the pressure-sensitive image. The image can reflect the pressure distribution of the substance and compression sequence. With the processing method of footprint image formed by such pressure-sensitive light and shadow imaging system, several single-frame footprint images are processed as a complete footprint image containing all footprint features, which can eliminate background noise.
Abstract:
Method for producing an individual foot sole last (15) for a patient (10) or sportsman by reference to measured values and/or medical findings which are obtained from the body of the patient (10) or sportsman, characterized in that the individual foot sole last (15) is constructed of individual pre-fabricated standard modules (17), wherein the standard modules (17) are selected from a module set, whereby by reference to the measured values and/or medical findings which are obtained from the body of the patient (10) or sportsman, an actual value for the foot mould is determined and this is compared with one or more predefined desired values and by reference to the result of the comparison and the knowledge of the standard modules (17) present in the module set, those standard modules (17) are selected and combined in their sequence—or specified in their sequence—which come closest to the ideal individual foot sole last (15) determined by reference to the comparison of actual and desired value.
Abstract:
A sensor for pressure measurement may include a fabric support, an electrically conductive structure including tracks on the fabric support having resistance variations in response to deformations thereof, and a processor coupled to the electrically conductive structure and configured to sense resistance values of respective tracks of the electrically conductive structure and to provide a signal representative of a pressure difference across opposite faces of the fabric support.
Abstract:
Systems and methods for measuring feet and designing and creating orthopedic inserts are described. The method can include measuring a pressure the foot exerts during a stride at a plurality of points over a period of time, analyzing a pressure at the plurality of points over the period of time and designing the orthopedic insert based on the analysis. The system can include a device that measures a pressure exerted by a foot at a plurality of times at each of a plurality of points and a computer connected to the device, the computer having memory that stores the measured pressures and a program operable to analyze the measured pressures to create a design of an orthopedic insert.
Abstract:
An apparatus and method for determining contours of a patient's foot. The apparatus includes an alignment section that orientates the foot relative to an optical imaging section. The alignment section includes at least one support member located proximate a focal length of the imaging section, that engages the plantar surface substantially only in the immediate area of the fifth metatarsal head of the foot. The support generates a dorsally-directed load that locks the midtarsal joint. The alignment section further includes a heel stirrup and a laser beam or other reference line for aligning the second metatarsal head with the distal one-third of the lower leg, to place the subtalar joint in a neutral condition. The foot is thus suspended in space such that the imaging section is able to obtain an accurate measurement of the plantar surface without distortion of the soft tissues or bone structure of the foot.
Abstract:
A method for preparing a clinical restraint for a subject, the method comprises scanning the portion of the subject to be restrained to produce a 3D image data set, generating a three dimensional replica of the portion of the subject from the 3D image data set and preparing a clinical restraint using the three dimensional replica. A scanning system for generating the 3D image data set comprising one or more projectors (6) and one or more cameras (8) in combination with an image processing device is also disclosed. The imaging aspects are also applied in the monitoring of the treatment of a patient, the manufacture and fitting of medical items, such as compression hosiery and the like, as well as in the fitting of garments and items of clothing.
Abstract:
Individually formed footwear such as shoes and insoles for correcting the feet position and alleviate related problems. The shoe or insole includes at least one layer made of thermoplastic material, which material is advantageously chosen from a group of ABS, PVC, A-PET and PETG. A method for providing such footwear to a client at a retail store is likewise presented.
Abstract:
The present invention presents a shoe or insole fitting navigation system including a set of foot sole pressure measuring sensors for measuring foot sole pressure distributions; a set of TV cameras for taking foot images; a processor; and a monitor screen. The present system acquires right and left foot sole pressure data, acquires right and left foot images, computes a foot sole gravity center position of each foot, computes an outer dimension of each foot, and determines bias in gravity center balance of each foot accurately based on the foot sole gravity center position of each foot and the outer dimension of each foot. In addition, the present system determines an abnormal foot symptom of each foot, and selects a shoe or insole of each foot based on the determined bias in gravity center balance and the determined foot symptom.
Abstract:
Method for obtaining a plantar image using means for securing and tightening an elastic membrane, as well as to the double-sided machining of the obtained insole, said means taking the form of two adjustable horizontal bars positioned on a scanner or a plurality of cameras and an anti-reflective lens, wherein a membrane is positioned between said horizontal bars and secured using T-flat bars; the stress of the membrane being adjusted using a handle; the foot is positioned on the membrane; an image is taken; and the insole is subjected to double-sided machining on the basis of the image of the surface provided in STL format, with the aid of a securing device that enables the pieces to be rotated up to 180°. The device used includes a plurality of supporting bars with two adjustable horizontal bars, wherein the elastic membrane is adjusted and tightened using T-flat bars and a handle.