GENERATIVE LANGUAGE MODEL FOR FEW-SHOT ASPECT-BASED SENTIMENT ANALYSIS

    公开(公告)号:US20240078389A1

    公开(公告)日:2024-03-07

    申请号:US18505708

    申请日:2023-11-09

    CPC classification number: G06F40/30 G06F40/284 G06N3/04 G06N3/08

    Abstract: Sentiment analysis is a task in natural language processing. The embodiments are directed to using a generative language model to extract an aspect term, aspect category and their corresponding polarities. The generative language model may be trained as a single, joint, and multi-task model. The single-task generative language model determines a term polarity from the aspect term in the sentence or a category polarity from an aspect category in the sentence. The joint-task generative language model determines both the aspect term and the term polarity or the aspect category and the category polarity. The multi-task generative language model determines the aspect term, term polarity, aspect category and category polarity of the sentence.

    SYSTEMS AND METHODS FOR UNSUPERVISED STRUCTURE EXTRACTION IN TASK-ORIENTED DIALOGUES

    公开(公告)号:US20230120940A1

    公开(公告)日:2023-04-20

    申请号:US17589693

    申请日:2022-01-31

    Abstract: Embodiments described herein propose an approach for unsupervised structure extraction in task-oriented dialogues. Specifically, a Slot Boundary Detection (SBD) module is adopted, for which utterances from training domains are tagged with the conventional BIO schema but without the slot names. A transformer-based classifier is trained to detect the boundary of potential slot tokens in the test domain. Next, while the state number is usually unknown, it is more reasonable to assume the slot number is given when analyzing a dialogue system. The detected tokens are clustered into the number of slot of groups. Finally, the dialogue state is represented with a vector recording the modification times of every slot. The slot values are then tracked through each dialogue session in the corpus and label utterances with their dialogue states accordingly. The semantic structure is portrayed by computing the transition frequencies among the unique states.

    Efficient determination of user intent for natural language expressions based on machine learning

    公开(公告)号:US11544470B2

    公开(公告)日:2023-01-03

    申请号:US17005316

    申请日:2020-08-28

    Abstract: An online system allows user interactions using natural language expressions. The online system uses a machine learning based model to infer an intent represented by a user expression. The machine learning based model takes as input a user expression and an example expression to compute a score indicating whether the user expression matches the example expression. Based on the scores, the intent inference module determines a most applicable intent for the expression. The online system determines a confidence threshold such that user expressions indicating a high confidence are assigned the most applicable intent and user expressions indicating a low confidence are assigned an out-of-scope intent. The online system encodes the example expressions using the machine learning based model. The online system may compare an encoded user expression with encoded example expressions to identify a subset of example expressions used to determine the most applicable intent.

Patent Agency Ranking