Abstract:
In an example, a processing system of a database system may categorize event data taken from logged interactions of users with a multi-tenant information system to provide a metric. Event roll-up aggregate metrics used to provide the metric may be generated in connection with event capture. The processing system of the database system may periodically calculate the metric for a particular one of the tenants, and electronically store the periodically calculated metrics for accessing responsive to a query of the particular tenant.
Abstract:
Computer-implemented methods and systems are provided for writing events to a data store. An application server generates events, the data store that stores the events, and a temporary events file storage system (TEFSS) temporarily stores groups of events as events files. When events are unable to be written directly to the data store, an indirect events writer is invoked that includes event capture threads each being configured to generate a particular events file, and write it to the TEFSS. Each events file includes a plurality of events flushed from an in-memory buffer service. An events file uploader service reads the events file(s) from the TEFSS, and then writes the events from each of the events files to the data store.
Abstract:
A server includes a processing device to execute a resource manager to receive, from a client device, a job to complete a data-processing task using processing resources of a data-processing cluster, and configure a scheduler to be associated with the data-processing cluster and to manage sharing the processing resources with at least a second job. The scheduler includes a job queue. The processing device is further to partition the job queue into a delegator queue and an application queue, wherein the delegator queue is associated with a delegator container and the application queue is associated with a child application container. The processing device is further to manage, in completion of the job, the processing resources of the data-processing cluster according to capacities allocated to the delegator queue and to the application queue, respectively.
Abstract:
A database system may determine that a database is unavailable to generate an identifier for an event or that events may not be written to the database. As a result, the database system may write the event to a low-latency, supplementary file system. The database system may determine that the database is available at a later time, and read the event from the supplementary file system, store the event in a memory component, and then delete the event from the supplementary file system. The database system may then access the database to generate an identifier for the event, write the event to the database, and then delete the event from the memory component.
Abstract:
In an example, composite keys for an event log may be provided. A partitioner may be configured to extract a natural key from the composite keys and distribute log lines of event log files to a plurality of reducer nodes based on a value of the natural key. A comparator may use a log time of the composite key to sort a received portion of the distributed log lines.
Abstract:
Computer-implemented methods and systems are provided. The system includes a data store that is configured to store events in an event table, a temporary events file storage system (TEFSS), and a cluster of application servers. The cluster includes a first application server that generates events, and a second application server that includes an events file uploader service. When the first application server is unable to directly write events to the data store, an indirect events writer generates events file(s), and writes the events file(s) to the TEFSS. Each events file includes a plurality of events flushed from an in-memory buffer service at the first application server. When the events file uploader service determines that the first application server is inactive, it reads the events file(s) from the TEFSS, and writes the events from each of the events files to the data store.
Abstract:
A database system captures custom information of a header section associated with a logged interaction of a user. The database system may receive a hypertext transfer protocol (http) message including the header section and determine whether the header section includes a predetermined data pattern associated with the custom information added by a second application that is different than a first application which initiated the http message. The database system may extract the custom information from the header section in response to determining that the header section includes the predetermined data pattern. The custom information and event data extracted from the logged interaction of the user may be stored on the database system as a storage element.
Abstract:
Computer-implemented methods and systems are provided for writing events to a data store. An application server generates events, the data store that stores the events, and a temporary events file storage system (TEFSS) temporarily stores groups of events as events files. When events are unable to be written directly to the data store, an indirect events writer is invoked that includes event capture threads each being configured to generate a particular events file, and write it to the TEFSS. Each events file includes a plurality of events flushed from an in-memory buffer service. An events file uploader service reads the events file(s) from the TEFSS, and then writes the events from each of the events files to the data store.
Abstract:
Disclosed are some examples of systems, methods, apparatus and computer program products for scheduling jobs to process log files. In some implementations, a scheduler can be configured to identify a final state of a previously scheduled first job as a failure in execution by one or more processors. For instance, the first job may have been defined to process a first input log file saved to a database during a first timeframe of a sequence of timeframes of a designated interval. The scheduler can detect a second input log file saved to the database. The scheduler can then define a second job to process the first input log file and the second input log file and schedule the second job in association with a second timeframe of the sequence.
Abstract:
Disclosed are some examples of database systems, methods, and computer program products for run-time schema for event records. In some implementations, event records satisfying a query can be identified. Attribute-value pairs of data of those identified event records can be stored in an unstructured data field of an event record.