Abstract:
A method of operation of a wireless communication system includes: processing a received signal; calculating filter weights, by a filter weights estimation module, from the received signal; generating a corrected sequence, through a widely linear-single antenna interference cancellation (WL-SAIC) module, by applying the filter weights; calculating a channel estimation concurrently with the corrected sequence; and generating an adjusted data by an output equalizer including applying the channel estimation to the corrected sequence.
Abstract:
Methods and apparatuses are provided in which a signal is received at a receiver. A processor of the receiver computes frequency offset (FO) inter-carrier interference (ICI) compensation, based on a real matrix part of an approximate ICI matrix and an FO estimated from the received signal. The processor applies the FO ICI compensation to the received signal in a frequency domain to produce an ICI compensated output. The processor applies a phase rotation to the ICI compensated output.
Abstract:
According to an embodiment of the present disclosure, a receiver of modulated signals comprises a signal mixer, a synchronization detector, and a data demodulator. The signal mixer is configured to perform baseband down-conversion of a signal according to a mixer frequency, the signal including a synchronization header and a data payload. The synchronization detector is configured to: generate a differential signal based on the signal, perform cross-correlation of the differential signal with a reference differential signal to generate a cross-correlation output, and analyze the cross-correlation output to detect an end of the synchronization header. The data demodulator is configured to demodulate the data payload in response to detection of the end of the synchronization header.
Abstract:
A system and method for removing bias from a frequency estimate. A simulation is used to predict, for various values of the signal to noise ratio, a bias in a raw frequency estimate produced by a frequency estimation algorithm. A straight line is fit to simulated frequency offset estimates as a function of true frequency offset, and the reciprocal of the slope of the line is stored, as a multiplicative bias removal term, in a lookup table, for the simulated signal to noise ratio. In operation, the raw frequency estimate is multiplied by a multiplicative bias removal term, obtained from the lookup table, to form a corrected frequency offset estimate.