Abstract:
A method of generating three-dimensional (3D) volumetric data may be performed by generating a multilayer image, generating volume information and a type of a visible part of an object, based on the generated multilayer image, and generating volume information and a type of an invisible part of the object, based on the generated multilayer image. The volume information and the type of each of the visible part and invisible part may be generated based on the generated multilayered image which may be include at least one of a ray-casting-based multilayer image, a chroma key screen-based multilayer image, and a primitive template-based multilayer image.
Abstract:
A method of learning a parameter to estimate a posture of an articulated object, and a method of estimating the posture of the articulated object are provided. A parameter used to estimate a posture of an articulated object may be iteratively learned based on a depth feature corresponding to an iteration count, and the posture of the articulated object may be estimated based on the learned parameter.
Abstract:
A three-dimensional display device and a user interfacing method therefor are disclosed. The three-dimensional display device according to one embodiment comprises: a display unit for displaying a three-dimensional virtual object; a user input signal generation unit for generating a user input signal by detecting a handling object for handling an operation of the three-dimensional virtual object in a three-dimensional space matched with the three-dimensional virtual object; and a control unit for controlling the operation of the three-dimensional virtual object according to the user input signal.
Abstract:
An object recognition system is provided. The object recognition system for recognizing an object may include an input unit to receive, as an input, a depth image representing an object to be analyzed, and a processing unit to recognize a visible object part and a hidden object part of the object, from the depth image, by using a classification tree. The object recognition system may include a classification tree learning apparatus to generate the classification tree.
Abstract:
A three-dimensional display device and a user interfacing method therefor are disclosed. The three-dimensional display device according to one embodiment comprises: a display unit for displaying a three-dimensional virtual object; a user input signal generation unit for generating a user input signal by detecting a handling object for handling an operation of the three-dimensional virtual object in a three-dimensional space matched with the three-dimensional virtual object; and a control unit for controlling the operation of the three-dimensional virtual object according to the user input signal.
Abstract:
Provided are a positioning method and apparatus. The positioning method includes acquiring a plurality of positioning results including positions of key points of a facial area included in an input image, respectively using a plurality of predetermined positioning models, evaluating the plurality of positioning results using an evaluation model of the positions of the key points, and updating at least one of the plurality of predetermined positioning models and the evaluation model based on a positioning result that is selected, based on a result of the evaluating, from among the plurality of positioning results.
Abstract:
A virtual world processing apparatus and method. Sensed information, which is information collected by a sensor is inputted. The sensed information is adapted, based on a sensor capability, which is information on capability of the sensor. Accordingly, interoperability between a real world and a virtual world or interoperability between virtual worlds may be achieved.
Abstract:
A three-dimensional (3D) display device for displaying a 3D image using at least one of a gaze direction of a user and a gravity direction includes a gaze direction measuring unit to measure the gaze direction, a data obtaining unit to obtain 3D image data for the 3D image, a viewpoint information obtaining unit to obtain information relating to a viewpoint of the 3D image, a data transform unit to transform the 3D image data, based on the gaze direction and the information relating to the viewpoint of the 3D image, and a display unit to display the 3D image, based on the transformed 3D image data.
Abstract:
Example embodiments disclose a method of generating a feature vector, a method of generating a histogram, a learning unit classifier, a recognition apparatus, and a detection apparatus, in which a feature point is detected from an input image based on a dominant direction analysis of a gradient distribution, and a feature vector corresponding to the detected feature point is generated.
Abstract:
An estimator training method and a pose estimating method using a depth image are disclosed, in which the estimator training method may train an estimator configured to estimate a pose of an object, based on an association between synthetic data and real data, and the pose estimating method may estimate the pose of the object using the trained estimator.