Abstract:
An integrated circuit device according may include a plurality of gate structures embedded in a substrate, a direct contact on the substrate between the plurality of gate structures, and a bit line electrode layer on the direct contact. The bit line electrode layer has a thickness of about 10 nm to 30 nm. The bit line electrode layer may include a molybdenum tungsten (MoW) alloy including molybdenum (Mo) a range of about 25 at % to about 75 at %.
Abstract:
A magnetic memory device includes a first cell array structure including first and second free magnetic patterns which extend in a first direction parallel to a top surface of a substrate and are spaced apart from each other in a second direction intersecting the first direction, and a second cell array structure including a third free magnetic pattern between the first and second free magnetic patterns and a fourth free magnetic pattern spaced apart from the third free magnetic pattern with the second free magnetic pattern therebetween. The first cell array structure further includes a first transistor region including first transistors connected to the first and second free magnetic patterns. The second cell array structure further includes a second transistor region including second transistors connected to the third and fourth free magnetic patterns. The second transistor region is spaced apart from the first transistor region in the first direction.
Abstract:
A method for providing a magnetic junction usable in a magnetic device and the magnetic junction are described. The method includes providing a free layer, a pinned layer and a nonmagnetic spacer layer between the free layer and the pinned layer. The free layer is switchable between a plurality of stable magnetic states when a write current is passed through the magnetic junction. At least one of the step of providing the free layer includes a first plurality of steps and the step of providing the pinned layer includes a second plurality of steps. The first and second plurality of steps include depositing a portion of a layer, depositing a sacrificial layer, annealing the portion of the magnetic junction under the sacrificial layer, and depositing a remaining portion of the layer. The layer may be the free layer, the pinned layer, or both.