Abstract:
An organic light emitting display device includes pixels, a scan driver, a memory configured to store pixel data containing information indicative of threshold voltages and mobilities of first transistors in the pixels, a timing controller configured to modify one or more bits of first data to generate second data, the first data modified in response to the pixel data, a data driver configured to generate data signals based on the second data, and a control driver configured to supply a first control signal to a first control line commonly coupled to the pixels and a second control signal to a second control line, wherein each of the pixels is configured to store a data signal of a current frame and to emit light corresponding to a data signal of a previous frame.
Abstract:
A thin film transistor includes a substrate, a semiconductor layer on the substrate, a first insulating layer covering the substrate and the semiconductor layer, a first gate electrode on the first insulating layer and overlapping the semiconductor layer, a second insulating layer covering the first gate electrode and the first insulating layer, a second gate electrode on the second insulating layer and overlapping the semiconductor layer and the first gate electrode, a third insulating layer covering the second gate electrode, a first contact hole defined in the first insulating layer, the second insulating layer and the third insulating layer, and through which a portion of the semiconductor layer is exposed, and a source electrode and a drain electrode connected to the semiconductor layer through the first contact hole.
Abstract:
A display panel includes a pixel connected to a scan line and a data line, and a lighting test circuit which provides a lighting test voltage to the pixel through the data line. The lighting test circuit includes a first test transistor including a first electrode which receives the lighting test voltage, a second electrode and a gate electrode which receives a first test control signal, and a second test transistor including a first electrode connected to the second electrode of the first test transistor, a second electrode connected to the data line and a gate electrode which receives a second test control signal.
Abstract:
A display device including: a substrate including a display area and a peripheral area peripheral to the display area; a plurality of pads disposed in a pad area, wherein the pad area is disposed in the peripheral area and the pad area includes an integrated circuit (IC); and a first crack detecting line connected to a first pad and a second pad at a first node, and a third pad at a second node, wherein the first crack detecting line is disposed in the peripheral area between the first node and the second node.
Abstract:
A display device includes a display panel, a data driver which provides data voltages to the display panel, and a controller which provides output image data to the data driver. The controller includes a data line memory which stores input image data for each pixel row of the display panel, an address line memory which stores addresses for the input image data, and a data serialize block which generates the output image data provided to the data driver by rearranging the input image data stored in the data line memory based on the addresses stored in the address line memory.
Abstract:
A flexible display device according to example embodiments includes a rollable display panel, a housing accommodating the rollable display panel in a rolled state and including an opening portion through which the rollable display panel is pulled out, an optical sensor disposed at the opening portion and configured to detect luminance of the rollable display panel while the rollable display panel is rolled or unrolled, a controller configured to compensate image data based on detection data generated by the optical sensor, and a display panel driver configured to control a display of rollable display panel.
Abstract:
A flexible display device according to example embodiments includes a rollable display panel, a housing accommodating the rollable display panel in a rolled state and including an opening portion through which the rollable display panel is pulled out, an optical sensor disposed at the opening portion and configured to detect luminance of the rollable display panel while the rollable display panel is rolled or unrolled, a controller configured to compensate image data based on detection data generated by the optical sensor, and a display panel driver configured to control a display of rollable display panel.
Abstract:
A scanline driver includes a shift register circuit and an output buffer. The shift register circuit provides a register output signal and a plurality of signals based on a scan input signal and a plurality of clock signals. The shift register circuit is arranged at at least one horizontal side of a pixel circuit region and includes a plurality of unit pixel circuits connected to a scanline. The output buffer provides a scanline enable signal to the scanline based on the register output signal and the plurality of signals. The output buffer is arranged at at least one vertical side of the pixel circuit region in a pixel array.
Abstract:
A pixel includes an organic light emitting diode (OLED) having a cathode electrode coupled to a second power supply, a pixel circuit configured to control an amount of current supplied to the OLED to correspond to a previous data signal, and a driver configured to store a present data signal supplied from a data line and to supply the previous data signal to the pixel circuit. The OLED, pixel circuit, and driver may be controlled by signals in a frame that includes first through fourth periods, the second power supply may be set to a first voltage in the first and second periods and to a second voltage in the third and fourth periods, and the first voltage may be a voltage at which the OLED does not emit light and the second voltage may be a voltage at which the OLED emits light.
Abstract:
A display apparatus includes a display panel, a gate driver, a data driver and a coupling voltage generator. The display panel includes a plurality of pixels. The gate driver provides a gate signal to the display panel. The data driver provides a data voltage to the display panel. The coupling voltage generator provides a coupling voltage to the display panel. The coupling voltage has a plurality of levels.