Abstract:
A display panel including first and second sub pixel electrodes, a first light emitting unit, first and second charge generation layers, a second light emitting unit, and an upper electrode. The first light emitting unit is provided with a first contact hole. The first charge generation layer includes a first contact part being in the first contact hole and coupled to a portion of the first sub pixel electrode exposed by the first contact hole, and a first extension part extending from the first contact part and being on the first light emitting unit. The second charge generation layer and the second light emitting unit are provided with a second contact hole. The upper electrode includes a first upper electrode part being in the second contact hole and coupled to a second contact part of the second charge generation layer exposed by the second contact hole.
Abstract:
An organic light emitting display apparatus includes a substrate, an organic layer on the substrate, wherein the organic layer includes a first concave portion and a first convex portion on a surface thereof, a first electrode on the organic layer, wherein the first electrode includes a second concave portion and a second convex portion on a surface thereof, a second electrode on the first electrode, and an emission layer between the first and second electrodes. A vertical distance between the second concave portion and the second convex portion is less than that between the first concave portion and the first convex portion.
Abstract:
An organic light emitting display (OLED) device includes: an insulating substrate; a first electrode on the insulating substrate; a second electrode on the first electrode; a light-emitting layer between the first electrode and the second electrode; a hole common layer between the first electrode and the light-emitting layer; an electron common layer between the second electrode and the light-emitting layer; and a scattering layer on the insulating substrate and having a non-planar surface, wherein the scattering layer includes at least one of benzene, naphthalene, anthracene, tetracene, pentacene, amine, benzidine, biphenyl, carbazole, pyridine, bipyridine, imidazole, phenanthroline, phenylborane, pyrimidine, or triazine, and the base material of the scattering layer includes a substituent including at least one of a benzoyl group, a carboxyl group, an aminophenoxyl group, a tricabonate group, or a styryl group.
Abstract:
A display apparatus includes: a substrate including a display area in which thin film transistors and display devices electrically connected to the thin film transistors are arranged and a first non-display area outside the display area; a through portion vertically penetrating the substrate; a second non-display area between the through portion and the display area; and an encapsulation layer on the display devices and including a first inorganic encapsulation layer, an organic encapsulation layer, and a second inorganic encapsulation layer, which are sequentially stacked. The first inorganic encapsulation layer and the second inorganic encapsulation layer extend to the through portion and directly contact each other in the second non-display area, and the first inorganic encapsulation layer directly contacts another inorganic layer thereunder in the second non-display area.
Abstract:
A display apparatus manufacturing method includes preparing a substrate, forming, on the substrate, a display preliminary structure including at least one first electrode, arranging, in a processing chamber, the substrate on which the display preliminary structure is formed, and irradiating ultraviolet rays onto the substrate while maintaining a pressure atmosphere in the processing chamber lower than an atmospheric pressure, forming an intermediate layer on the display preliminary structure, the intermediate layer including an emission layer, and forming a second electrode on the intermediate layer.
Abstract:
A display apparatus includes a substrate including a display area and a sensor area, the display area including main pixels and the sensor area including auxiliary pixels and a transmission portion; a first pixel electrode and a first emission layer in each of the main pixels; a second pixel electrode and a second emission layer in each of the auxiliary pixels; an opposite electrode integrally arranged in the display area and the sensor area; and a metal layer at least partially surrounding the transmission portion, wherein the opposite electrode has an opening corresponding to the transmission portion.
Abstract:
A display device includes a substrate including a first display area and a second display area, the first display area including a first pixel, and the second display area including a second pixel and a transmissive area, a first pixel electrode and a first emission layer in the first pixel, a second pixel electrode and a second emission layer in the second pixel, an opposite electrode arranged as one body in the first display area and the second display area, and a top layer arranged on the opposite electrode, wherein the opposite electrode and the top layer each have an opening area corresponding to the transmissive area, and wherein a convex portion is around the transmissive area, the convex portion being convex in a top surface direction of the substrate.
Abstract:
A display panel includes an auxiliary electrode on a base substrate, a first electrode spaced from the auxiliary electrode, a first light emitting unit on the auxiliary electrode and the first electrode, an conductive thin film layer on the first light emitting unit, a second light emitting unit on the conductive thin film layer, a first contact hole through the conductive thin film layer to expose the auxiliary electrode, a insulating layer in the first contact hole, and a second electrode including a first electrode part and a second electrode part, the first electrode part being on the insulating layer in the first contact hole, and the second electrode part overlapping the first electrode and being on the second light emitting unit, in which the insulating layer is between the first electrode part and the conductive thin film layer.
Abstract:
A display apparatus includes a display area and a transmission area on a substrate, and an intermediate area arranged between the display area and the transmission area and including a first sub-intermediate area and a second sub-intermediate area between the first sub-intermediate area and the transmission area, and a number of layers of thin films stacked on the substrate in the first sub-intermediate area is different from a number of layers of thin films stacked on the substrate in the second sub-intermediate area.
Abstract:
A display panel includes an auxiliary electrode on a base substrate, a first electrode spaced from the auxiliary electrode, a first light emitting unit on the auxiliary electrode and the first electrode, an conductive thin film layer on the first light emitting unit, a second light emitting unit on the conductive thin film layer, a first contact hole through the conductive thin film layer to expose the auxiliary electrode, a insulating layer in the first contact hole, and a second electrode including a first electrode part and a second electrode part, the first electrode part being on the insulating layer in the first contact hole, and the second electrode part overlapping the first electrode and being on the second light emitting unit, wherein the insulating layer is between the first electrode part and the conductive thin film layer.