Abstract:
A display apparatus may include a substrate, a display element disposed above the substrate, an encapsulation layer disposed above the display element and including an inorganic encapsulation layer and an organic encapsulation layer, and a touch-sensing layer disposed above the encapsulation layer. The touch-sensing layer may include a first insulating layer including a side surface inclined with respect to a top surface of the encapsulation layer and including an organic material. The touch-sensing layer may include a conductive layer including sensing electrodes, and a second insulating layer covering the conductive layer and including a refractive index that may be different from that of the first insulating layer.
Abstract:
Provided is a display device including a display panel including light emitting regions and a non-light emitting region adjacent to the light emitting regions, a first insulation layer disposed on the display panel, the first insulation layer having a first refractive index, and having first openings defined in a region overlapping the light emitting regions, a second insulation layer covering the display panel and the first insulation layer and having a second refractive index greater than the first refractive index of the first insulation layer, a third insulation layer disposed on the second insulation layer, the third insulation layer having the first refractive index, and having second openings defined in a region overlapping the light emitting regions, and a fourth insulation layer covering the second insulation layer and the third insulation layer and the fourth insulation layer having the second refractive index.
Abstract:
In a method of manufacturing a display apparatus, the method includes: providing a first mother substrate; forming, on the first mother substrate, a pixel layer comprising a light-emitting device; providing a second mother substrate; forming, on the second mother substrate, a diffraction pattern layer configured to diffract light emitted from the light-emitting device; forming a bonded substrate structure by bonding the first mother substrate, on which the pixel layer is formed, and the second mother substrate, on which the diffraction pattern layer is formed; forming, by cutting the bonded substrate structure, a plurality of unit substrate structures each comprising a first substrate on which the pixel layer is formed and a second substrate on which the diffraction pattern layer is formed; forming a protection member on the diffraction pattern layer; and removing a foreign material on the diffraction pattern layer with the protection member.
Abstract:
An organic light emitting display device includes a first substrate, a first electrode layer including a plurality of first electrodes and an auxiliary electrode on the first substrate, the auxiliary electrode being spaced apart from the first electrodes in a plan view, an organic layer on the first electrode layer, the organic layer overlapping the first electrodes of the first electrode layer, a second electrode layer on the first electrode layer, the second electrode layer overlapping the first electrodes and the auxiliary electrode of the first electrode layer, a second substrate on the second electrode layer, and a connection member penetrating through the second electrode layer and through the organic layer to electrically connect the second electrode layer and the auxiliary electrode, the connection member contacting the second substrate.