Abstract:
A stage circuit and a scan driver, the stage circuit including a switch unit configured to selectively electrically couple a first node to one of a first input terminal and a second input terminal, a first driver coupled to the first node, to a second node, to a third node, to a first clock terminal, and to a second clock terminal, and a second driver coupled to the second node, to the third node, to a third clock terminal, and to a common terminal, and configured to output a scan signal to an output terminal.
Abstract:
A pixel includes a plurality of organic light emitting diodes, each of which including a cathode electrode coupled to a second power source, a pixel circuit coupled to a scan line and to a data line, the pixel circuit configured to control current supplied from a first power source to the organic light emitting diodes corresponding to a data signal supplied to the data line, and first transistors between the pixel circuit and respective ones of the organic light emitting diodes, the first transistors configured to be turned on or to be turned off when a low emission control signal is supplied to a first emission control line, wherein a scan signal supplied to the scan line is a first voltage, and wherein the low emission control signal is a second voltage that is different than the first voltage.
Abstract:
A thin film transistor substrate includes a substrate including a display area including: pixels and a periphery area where a driver for driving the pixels is disposed; first signal lines connected with the pixels and extended to the periphery area, and including first short-circuit portions provided in the periphery area; second signal lines connected with the pixels and extended to the periphery area by crossing the first signal lines in an insulated manner; first connection members overlapping lateral ends of the first signal lines, disposed in lateral sides with respect to the first short-circuited portions, and formed of a doped semiconductor; and first repairing conductors overlapping the lateral ends of the first signal lines, and disposed in the lateral sides with respect to the first short-circuited portions. Lateral ends of the first connection members are connected with the lateral ends of the first signal lines through contact holes.
Abstract:
A liquid crystal display includes a substrate, a plurality of pixel electrodes formed on the substrate, a common electrode facing the pixel electrodes, and a liquid crystal layer interposed between the pixel electrodes and the common electrode. The pixel electrode includes at least one oblique edge including a plurality of protruded and depressed portions.
Abstract:
A thin film transistor substrate includes a substrate including a display area including pixels and a periphery area where a driver for driving the pixels is disposed; first signal lines connected with the pixels and extended to the periphery area, and including a first short-circuit portion provided in the periphery area; second signal lines connected with the pixels and extended to the periphery area by crossing the first signal lines in an insulated manner; first connection members overlapping lateral ends of the first signal lines, disposed in lateral sides with respect to the first short-circuited portion and formed of a doped semiconductor; and first repairing conductors overlapping the lateral ends of the first signal line, disposed in the lateral sides with respect to the first short-circuited portion. Lateral ends of the first connection member are connected with the lateral ends of the first signal line through contact holes.
Abstract:
An organic light emitting display device including: a plurality of first wirings extending in a first direction; and a plurality of second wirings extending in a second direction that crosses the first direction, wherein at least one of the plurality of first wirings includes a first conductive layer and a second conductive layer that extends from an upper portion of the first conductive layer to the same layer as the first conductive layer or a lower layer than the first conductive layer.
Abstract:
A liquid crystal display includes an array of pixels. Each pixel is divided into a first sub-pixel and a second sub-pixel, and different data voltages are separately applied to (or evolved at) the two sub-pixels, thereby enhancing the lateral side visibility. Each sub-pixel includes a sub-pixel electrode (connected to the drain electrode of a sub-pixel's switching element) overlapped with the sub-pixel's storage electrode. A first predetermined voltage is applied to the first sub-pixel and second predetermined voltage is applied the second sub-pixel, and thus the first sub-pixel electrode may receive a voltage lower than the voltage of the second sub-pixel electrode. The first sub-pixel electrode may be larger in area than the second sub-pixel electrode. The overlapping area between the first drain electrode and the storage electrode of a first sub-pixel may be larger than the overlapping area between the drain electrode and the storage electrode of a second sub-pixel. Thus the kickback voltage of the first sub-pixel may be substantially the same as the kickback voltage of the second sub-pixel.
Abstract:
In an organic light-emitting display device and a method of manufacturing the same, the organic light-emitting display device includes: a silicon layer formed on a substrate; and a thin film transistor (TFT) and an organic light-emitting device that are formed on the silicon layer. The silicon layer comprises a conductive doping silicon portion for forming a part of an active layer included in the TFT and an insulating intrinsic silicon portion surrounding the doping silicon portion. According to the organic light-emitting display device of the present invention, manufacturing costs may be reduced due to a reduction in the number of masks, and the manufacturing process of the organic light-emitting display device may be simplified.
Abstract:
A thin film transistor includes a substrate, a semiconductor layer on the substrate, a first insulating layer covering the substrate and the semiconductor layer, a first gate electrode on the first insulating layer and overlapping the semiconductor layer, a second insulating layer covering the first gate electrode and the first insulating layer, a second gate electrode on the second insulating layer and overlapping the semiconductor layer and the first gate electrode, a third insulating layer covering the second gate electrode, a first contact hole defined in the first insulating layer, the second insulating layer and the third insulating layer, and through which a portion of the semiconductor layer is exposed, and a source electrode and a drain electrode connected to the semiconductor layer through the first contact hole.
Abstract:
A display device includes a display panel including a reference voltage providing portion configured to apply a first reference voltage from a first reference voltage line to a plurality of readout lines and a pixel portion having a plurality of pixels connected to the readout lines, a scan driver providing a scan signal to the pixels via a plurality of scan lines, a data driver providing a data signal to the pixels via a plurality of data lines, a readout circuit converting voltages of the readout lines to digital data, and a controller cutting off a power based on the digital data.