Abstract:
An input-sensing unit includes first sensing electrodes, second sensing electrodes, first sensing lines, second sensing lines, third sensing lines, and bridge patterns. The second sensing electrodes are electrically insulated from the first sensing electrodes. The first sensing lines are respectively connected to the first sensing electrodes. The second sensing lines are respectively connected to first ends of the second sensing electrodes. The third sensing lines are respectively connected to second ends of the second sensing electrodes. The second ends oppose the first ends. The bridge patterns are respectively connected to the third sensing lines. The bridge patterns are closer to the first ends than to the second ends. The bridge patterns extend in a direction parallel to the third sensing lines.
Abstract:
An input sensing panel includes a base layer, a plurality of sensing electrodes arranged in a first direction and a second direction which cross each other in an insulating manner, and a plurality of sensing lines connected to a plurality of respective sensing electrodes, at least one of the plurality of sensing lines including a diagonal portion extending in a direction diagonal to each of the first direction and the second direction. Here, each of the plurality of sensing lines includes a lower layer disposed on the base layer and containing a first conductive material and an upper layer containing a second conductive material different from the first conductive material and contacting the lower layer, and the upper layer disposed in the diagonal portion is disconnected in the diagonal direction to expose a portion of the lower layer.
Abstract:
A display apparatus includes: a semiconductor layer on a substrate; a gate insulating layer on the substrate and covering the semiconductor layer; a gate electrode on the gate insulating layer and at least partially overlapping the semiconductor layer; an interlayer insulating layer on the gate electrode; and an electrode layer on the interlayer insulating layer and electrically connected to the semiconductor layer, wherein the interlayer insulating layer comprises a first portion and a second portion extending from the first portion, and the electrode layer is on the first portion of the interlayer insulating layer, and a step is provided by a difference in thicknesses of the first portion and the second portion.
Abstract:
An electronic panel including a base substrate including a plurality of unit detection areas; a first detection electrode including a first connection pattern disposed in each of the unit detection areas and extending along a first direction, and a plurality of first main patterns connected to one side and the other side of the first connection pattern, respectively; a second connection pattern including a second connection pattern disposed in each of the unit detection areas and extending along a second direction intersecting the first direction, and a plurality of second main patterns connected to one side and the other side of the second connection pattern; respectively, and a plurality of coordinate patterns arranged in the unit detection areas, respectively.
Abstract:
An OLED apparatus includes: a substrate; a TFT on the substrate and comprising an active layer, a first interlayer insulating layer between the gate electrode and the source and drain electrodes and comprising an inorganic material; a second interlayer insulating layer between the first interlayer insulating layer and the source and drain electrodes and comprising an organic material; a first organic layer covering the source and drain electrodes; a second organic layer on the first organic layer; a capacitor comprising a first electrode comprising a same material as the gate electrode, and a second electrode comprising a same material as the source and drain electrodes; a pixel electrode in an opening in an area that does not overlap with the TFT and the capacitor, and contacting one of the source and drain electrodes; an emission layer on the pixel electrode; and an opposite electrode on the emission layer.
Abstract:
An organic light-emitting display apparatus includes a substrate, an active layer of a thin film transistor formed over the substrate, a gate insulating layer formed over the active layer, a gate electrode of the thin film transistor formed over the gate insulating layer, an interlayer insulating layer formed over the gate electrode and the first electrode, a source electrode and a drain electrode formed over the interlayer insulating layer, a pixel electrode including a first region in direct contact with an upper surface of the interlayer insulating layer and a second region in direct contact with an upper surface of one of the source electrode and the drain electrode, a pixel defining layer covering the source and drain electrodes and including an opening which exposes the first region of the pixel electrode in an area that does not overlap the thin film transistor.
Abstract:
Provided is a display apparatus having improved image quality and high resolution, and including a first pixel, a second pixel, and a third pixel spaced apart from one another on a substrate, and configured to emit different respective colors, a pixel defining layer defining openings respectively corresponding to the first pixel, the second pixel, and the third pixel, and defining an emission area, a first dam portion on the pixel defining layer between the first pixel and the second pixel, and a second dam portion on the pixel defining layer between the second pixel and the third pixel.
Abstract:
A display apparatus is presented. The display apparatus includes a lower substrate, an upper substrate, a display layer disposed over the lower substrate, a first anti-reflection layer including a plurality of color filters, and a second anti-reflection layer which is disposed over the first anti-reflection layer and includes a high refractive index layer and a low refractive index layer. The apparatus is sufficiently strong and has reduced reflectivity that a cover member and an optical functional member that are often part of a conventional display apparatus are unnecessary.
Abstract:
A display device including: a display panel; and an input sensor disposed on the display panel, wherein the input sensor includes: sensing electrodes; signal lines connected to the sensing electrodes; a first insulating layer; a second insulating layer disposed on the first insulating layer; and first, second and third test patterns having different stacking structures from each other, wherein the first test pattern include a first conductive pattern, a first insulating pattern overlapping the first conductive pattern, and a second insulating pattern overlapping the first insulating pattern, the second test pattern includes a third insulating pattern and a fourth insulating pattern overlapping the third insulating pattern, and
the third test pattern includes a second conductive pattern.
Abstract:
A display device includes: a display panel; and an input sensing unit disposed on the display panel and including an active area and a peripheral area adjacent to the active area; wherein the input sensing unit includes: a first conductive layer disposed on at least the peripheral area; a first insulation layer disposed on the first conductive layer exposing at least a portion of the first conductive layer; a second conductive layer disposed on the first insulation layer and including sensing patterns; and a second insulation layer including an organic material disposed on the second conductive layer.