Method for detecting an open or closed state of a foldable electronic device

    公开(公告)号:US11921548B2

    公开(公告)日:2024-03-05

    申请号:US18047187

    申请日:2022-10-17

    CPC classification number: G06F1/1677

    Abstract: The present disclosure is directed to a detection method of a first or second state of a foldable electronic device including a first and a second hardware element tiltable to each other and accommodating a first and a second electrode which are in contact with each other when the foldable electronic device is in the first state and at a distance from each other otherwise. The detection method includes: acquiring a first and a second charge variation signal indicative of environmental electric/electrostatic charge variations detected by the first and second electrodes; generating a differential signal indicative of a difference between the first and the second charge variation signals; generating, as a function of the differential signal, one or more feature signals; and generating, as a function of the one or more feature signals, a contact signal indicative of the first or second states of the foldable electronic device.

    Pointing electronic device with fast start-up recovery and corresponding method

    公开(公告)号:US11249562B2

    公开(公告)日:2022-02-15

    申请号:US17162446

    申请日:2021-01-29

    Abstract: In an embodiment pointing electronic device, a sensor fusion processing stage generates an orientation estimation quantity indicative of an orientation about a longitudinal axis based on a sensor fusion algorithm envisaging processing of acceleration and gyroscopic signals; and a pointing determination stage implements an orientation-compensation of the gyroscopic signal as a function of the orientation estimation and generates screen-frame displacement data corresponding to 3D-space movements of the pointing electronic device based on the orientation-compensated gyroscopic signal. A processing block provides a starting value of the roll estimation, used to decrease an initial roll estimation error, by storing past values of the acceleration signal, during a time interval preceding start-up; and, upon start-up, retrieving and processing the stored past values to generate processed acceleration data, used by the sensor fusion processing stage to initialize the sensor fusion algorithm and generate the starting value of the roll estimation quantity.

    Low-power pointing method and electronic device implementing the pointing method

    公开(公告)号:US11163381B2

    公开(公告)日:2021-11-02

    申请号:US16924792

    申请日:2020-07-09

    Abstract: A low-power pointing method and an electronic device are disclosed. In an embodiment, an electronic device includes a first processor configured to receive attitude quaternion data, indicative of an orientation of the electronic device in a 3D-space, generated by a sensor-fusion algorithm from joint processing of an acceleration signal, indicative of acceleration acting on the electronic device along three reference axes of the 3D-space, and of a gyroscope signal, indicative of angular rate of rotation of the electronic device about the three reference axes of the 3D-space, process the quaternion data to determine an orientation difference between a current orientation and a previous orientation of the electronic device in the 3D-space, translate the orientation difference from the quaternion space to a tilt-compensated angular rate of rotation of the electronic device in the 3D-space and generate screen-frame displacement data based on the tilt-compensated angular rate of rotation.

    POINTING ELECTRONIC DEVICE WITH FAST START-UP RECOVERY AND CORRESPONDING METHOD

    公开(公告)号:US20210240285A1

    公开(公告)日:2021-08-05

    申请号:US17162446

    申请日:2021-01-29

    Abstract: In an embodiment pointing electronic device, a sensor fusion processing stage generates an orientation estimation quantity indicative of an orientation about a longitudinal axis based on a sensor fusion algorithm envisaging processing of acceleration and gyroscopic signals; and a pointing determination stage implements an orientation-compensation of the gyroscopic signal as a function of the orientation estimation and generates screen-frame displacement data corresponding to 3D-space movements of the pointing electronic device based on the orientation-compensated gyroscopic signal. A processing block provides a starting value of the roll estimation, used to decrease an initial roll estimation error, by storing past values of the acceleration signal, during a time interval preceding start-up; and, upon start-up, retrieving and processing the stored past values to generate processed acceleration data, used by the sensor fusion processing stage to initialize the sensor fusion algorithm and generate the starting value of the roll estimation quantity.

    LOW-POWER POINTING METHOD AND ELECTRONIC DEVICE IMPLEMENTING THE POINTING METHOD

    公开(公告)号:US20210034170A1

    公开(公告)日:2021-02-04

    申请号:US16924792

    申请日:2020-07-09

    Abstract: A low-power pointing method and an electronic device are disclosed. In an embodiment, an electronic device includes a first processor configured to receive attitude quaternion data, indicative of an orientation of the electronic device in a 3D-space, generated by a sensor-fusion algorithm from joint processing of an acceleration signal, indicative of acceleration acting on the electronic device along three reference axes of the 3D-space, and of a gyroscope signal, indicative of angular rate of rotation of the electronic device about the three reference axes of the 3D-space, process the quaternion data to determine an orientation difference between a current orientation and a previous orientation of the electronic device in the 3D-space, translate the orientation difference from the quaternion space to a tilt-compensated angular rate of rotation of the electronic device in the 3D-space and generate screen-frame displacement data based on the tilt-compensated angular rate of rotation.

    Device and method for determination of angular position in three-dimensional space, and corresponding electronic apparatus

    公开(公告)号:US10747330B2

    公开(公告)日:2020-08-18

    申请号:US16125515

    申请日:2018-09-07

    Abstract: An electronic device determines an estimate of angular position based on an accelerometric signal supplied by an accelerometric sensor and as a function of at least one of a gyroscopic signal from a gyroscopic sensor and a magnetic signal from a magnetic-field sensor. A processing module implements a complementary filter, which is provided with a first processing block, a second processing block, and a combination block. The first processing block receives the acceleration signal and an input signal indicative of the magnetic signal and generates a geomagnetic quaternion. The second processing block receives a signal indicative of the gyroscopic signal (gyro) and generates a gyroscopic quaternion. The combination block determines the estimate ({circumflex over (q)}) of angular position by complementarily combining the geomagnetic quaternion and the gyroscopic quaternion based on a combination factor that has a dynamic value and an adaptive value and that varies as a function of the operating conditions.

    System and method for automatic recognition of the gesture of bringing an electronic device to the ear

    公开(公告)号:US12287922B2

    公开(公告)日:2025-04-29

    申请号:US18512944

    申请日:2023-11-17

    Abstract: A recognition system for recognition of a gesture of bringing an electronic device, of a mobile or wearable type, to a user's ear, designed to be integrated in the electronic device and having: a movement sensor, configured to provide a movement signal indicative of the movement of the electronic device; an electrostatic charge variation sensor, configured to provide a charge variation signal associated with the movement; a processing module, operatively coupled to the movement sensor and to the electrostatic charge variation sensor and configured to perform a joint processing of the movement signal and the charge variation signal for the recognition of the gesture.

Patent Agency Ranking