Abstract:
An image pickup unit captures an image of a subject and outputs the image of the subject as an image pickup signal. A control unit determines with respect to similarity among a plurality of images contained in an image group in accordance with the image pickup signals of two or more frames among those output from the image pickup unit based on a predetermined threshold value indicating a magnitude of fluctuation between the images contained in the image group, and controls to output an image signal based on a result of the determination.
Abstract:
Insertion of a probe comprising an array of 16 source coils through a forceps channel of an electronic endoscope prepares the source coils in the insert of electronic endoscope for use in monitoring work objects. To a bed where a patient lies, are mounted two sets of sensor coils crossing at a right angle to each other, each of which comprises at least four single core coils with a common central axis placed on the same line in the same direction. A control section of the system gives signals with radiofrequencies (driving signals) through source cables to the source coils, to excite the source coils to generate magnetic fields around them.
Abstract:
A group of vectors are set to transform each signal of an endoscopic image resolved into a plurality of color signals into a plurality of new color signals based on statistical characteristics of the image. Also, the color signals of the endoscopic image are transformed into new color signals by a matrix operation using the group of vectors for the new color signals. After filtering is applied to the plurality of new color signals, the plurality of new color signals are transformed into a plurality of original color signals by a matrix operation using an inverse matrix of the matrix used in the matrix operation.
Abstract:
This electronic endoscope apparatus comprises an elongate insertable part, two image forming optical systems provide in the tip part of the insertable part and an integrated imaging device provided in the tip part of the insertable part and having two imaging regions in which object images are formed by two image forming optical systems. The imaging device has, for example, one solid state imaging device having two imaging regions or has two solid state imaging devices made integral.
Abstract:
The position of an antenna incorporated in a capsule-type endoscope 3 that moves in a body is estimated using a plurality of antennae, and where the distance dij between two positions Pti and P(t−1)j estimated at adjacent times falls within a predetermined value, pieces of information for these positions are related to each other and stored in a memory as connection information. Subsequently, processing for searching for a route from the connection information stored in the memory and calculating a track is performed.
Abstract:
An endoscope inserting direction detecting method includes receiving an endoscopic image, sampling pixels, which represent high densities, from data of the endoscopic image, defining an approximate expression for providing an approximate state of a distribution of sampling-pixels, evaluating a difference between a state of distribution of the sampling-pixels and a result of an approximation based on the approximate expression, and determining an endoscope inserting direction, in which an endoscope should be inserted, on the basis of a result of and evaluation of the fourth step.
Abstract:
A plurality of images inputted in an image signal input portion are divided into a plurality of regions by an image dividing portion, and a feature value in each of the plurality of regions is calculated by a feature value calculation portion and divided into a plurality of subsets by a subset generation portion. On the other hand, a cluster classifying portion classifies a plurality of clusters generated in a feature space into any one of a plurality of classes on the basis of the feature value and occurrence frequency of the feature value. And a classification criterion calculation portion calculates a criterion of classification for classifying images included in one subset on the basis of a distribution state of the feature value in the feature space of each of the images included in the one subset.
Abstract:
The present invention comprises: a pixel sampling unit that samples a stated pixel value from each of domains constituting an endoscopic image received by an image input/output control circuit; a shape-of-range estimating unit that estimates the shape of a range within the endoscopic image according to the continuity of the distribution of the pixels indicating the stated pixel value; and an inserting direction determining unit that determines an inserting direction within a body cavity, in which an endoscope should be further inserted, on the basis of the estimated shape. The inserting direction is displayed together with the endoscopic image, whereby the direction of a lumen can be determined reliably despite a simple configuration.
Abstract:
An endoscopic system comprises an endoscope system, an endoscopic position detecting apparatus, and an image processing apparatus. The endoscope system enables endoscopic examinations. The endoscopic position detecting apparatus detects the three-dimensional positions of the distal part of the endoscope in a body cavity. The image processing apparatus estimates the shape of an object entity visualized by the endoscope. The image processing apparatus is used as a means for grasping the shape of an object entity in a body cavity. For this purpose, the insertion unit of an electronic endoscope is inserted into the body cavity of a patient lying down on a patient couch. Specifically, a main unit of the image processing apparatus is connected to a video processor over a cable, and receives an image signal (R, G, and B signals and a sync signal) sent from the video processor. The main unit of the image processing apparatus estimates relative shapes according to successive image signals representing the object entity and being sent from the video processor. The main unit of the image processing apparatus then calculates the absolute shape of the object entity according to the position data of the distal part of the electronic endoscope sent from a main unit of the endoscopic position detecting apparatus.
Abstract:
A fluorescence endoscopy and an endoscopic device therefor, wherein, to an object to be examined containing a fluorescent substance, light rays in a plurality of wavelength ranges whose degrees of exciting the fluorescent substance are different from one another and which can constitute a color images are sequentially irradiated; images of the object are obtained by the respective wavelength ranges; a color image of the object is constituted using the images obtained by the respective wavelength ranges and information based on fluorescence emitted by the fluorescent substance, is obtained using at least an image obtained by a wavelength whose degree of exciting the fluorescent substance is largest out of the images obtained by the respective wavelength ranges.