Abstract:
In described embodiments, a thin film transistor (TFT) liquid crystal display (LCD) structure incorporates a white light emitting diode (LED) structure for backlighting. White LEDs are formed behind each TFT cell, allowing for display “black” as a function of a nematic layer, on the TFT substrate, while increasing intensity of the LED LCD backlight structure. A lens structure might be formed between the LEDs and the TFT substrate to reduce a number of LED sources for a given backlight intensity.
Abstract:
A manufacturing method, in which two device bars are bonded prior to facet coating to form a stacked bar pair. In one embodiment, each of the device bars has a p-side and an n-side, each side having a plurality of bonding pads, with at least some bonding pads located at the p-side of the first device bar adapted for mating with the corresponding bonding pads located at the p-side of the second device bar. Solder material deposited onto the p-side bonding pads adapted for mating is liquefied in a reflow oven, wherein surface tension of the liquefied solder self-aligns the device bars with respect to each other and keeps them in alignment until the solder is solidified to form a solder bond between the mated bonding pads. Two or more instances of the bonded bar pair are further stacked such that bonding pads located at the n-sides of adjacent bar pairs are mated in a relatively tight fit. The exposed facets in the resulting stack are then spray-coated with one or more reflective materials, with the solder bonds between the p-side bonding pads and the tight fit between the n-side bonding pads protecting those pads from overspray coating.
Abstract:
An optical assembly comprises a first semiconductor optical device and a second semiconductor optical device. The first and second semiconductor optical devices may, for example, be laser diodes or light-emitting diodes. In addition, the optical assembly includes an active cooling device that is in thermal contact with the first and second semiconductor optical devices. Advantageously, the active cooling device is operative to regulate the temperatures of both the first and second semiconductor optical devices.
Abstract:
A communication method providing audio notification that can indicate to the recipient the relative importance of a particular email message. In one embodiment, a communication method of the invention enables the sender of an email message to provide for the message an audio tag that specifies a notification sound that can be produced at the recipient's email-enabled device, e.g., instead of a default notification sound. In another embodiment, the recipient's device is configured to produce a notification sound based on at least one of (i) priority level of the email message and (ii) the audio tag provided with the message. Embodiments of the invention enhance the recipient's ability to screen email messages without looking at the message content, which can advantageously reduce occurrences of unnecessary toggling between email and other user applications, thereby improving the recipient's productivity.
Abstract:
RFID tags include circuitry operable to receive an input signal from a common transceiver and generate at least first and second signals, a first signal adapted to transmit information to the common transceiver and a second signal adapted to transmit information to adjacent RFID tags. The second adapted signal is received by the adjacent RFID tags and used to control their operation wherein they are temporarily disabled. During the time that the adjacent RFID tags are disabled, the first RFID tag communicates with the common transceiver via the first signal. When communication is complete the first RFID tags temporarily disable themselves allowing the adjacent RFID tags to be enabled and communicate with the common transceiver. In this manner only limited numbers of RFID tags are transmitting at one time thereby limiting the amount of RF power impinging upon the common transceiver. Spreading the RF power received by the common transceiver over time reduces the probability that the common transceiver will be overloaded or saturated improving the data transmission between RFID tags and common transceiver.
Abstract:
The specification describes an improved mechanical electrode structure for MOS transistor devices with elongated runners. It recognizes that shrinking the geometry increases the likelihood of mechanical failure of comb electrode geometries. The mechanical integrity of a comb electrode is improved by interconnecting the electrode fingers in a cross-connected grid. In one embodiment, the transistor device is interconnected with gate fingers on a lower metaliization level, typically the first level metal, with the drain interconnected at a higher metal level. That allows the drain fingers to be cross-connected with a vertical separation between drain and gate comb electrodes. The cross-connect members may be further stabilized by adding beam extensions to the cross-connect members. The beam extensions may be anchored in an interlevel dielectric layer for additional support.
Abstract:
A multi-chip electronic module comprises a multiplicity of integrated circuit chips arranged in a vertical stack. Each chip includes at least one first electrical terminal, with at least a first subset of the first terminals being disposed at different heights relative to the stack. A multiplicity of second electrical terminals is disposed on a support member, and a multiplicity of first electrical conductors (e.g., wirebonds) is connected between the first subset and at least a second subset of the second terminals. In order to reduce the skew produced at relatively high frequencies, all of the first conductors have substantially the same inductive impedance at the frequency of operation of the module. Our invention is particularly well suited to modules that operate at frequencies of about 500 MHz or higher.