Abstract:
A method for determining pitch pulse period signal boundaries by an electronic device is described. The method includes obtaining a signal. The method also includes determining a first averaged curve based on the signal. The method further includes determining at least one first averaged curve peak position based on the first averaged curve and a threshold. The method additionally includes determining pitch pulse period signal boundaries based on the at least one first averaged curve peak position. The method also includes synthesizing a speech signal.
Abstract:
Systems and methods of performing blind bandwidth extension are disclosed. In an embodiment, a method includes receiving, at a decoder of a speech vocoder, a set of low-band parameters as part of a narrowband bitstream. The set of low-band parameters are received from an encoder of the speech vocoder. The method also includes predicting a set of high-band parameters based on the set of low-band parameters.
Abstract:
A device includes a decoder that includes an extractor, a predictor, a selector, and a switch. The extractor is configured to extract a first plurality of parameters from a received input signal. The input signal corresponds to an encoded audio signal. The predictor is configured to perform blind bandwidth extension by generating a second plurality of parameters independent of high band information in the input signal. The second plurality of parameters corresponds to a high band portion of the encoded audio signal. The selector is configured to select a particular mode from multiple high band modes including a first mode using the first plurality of parameters and a second mode using the second plurality of parameters. The switch is configured to output the first plurality of parameters or the second plurality of parameters based on the selected particular mode.
Abstract:
A method includes determining a first modeled high-band signal based on a low-band excitation signal of an audio signal, where the audio signal includes a high-band portion and a low-band portion. The method also includes determining scaling factors based on energy of sub-frames of the first modeled high-band signal and energy of corresponding sub-frames of the high-band portion of the audio signal. The method includes applying the scaling factors to a modeled high-band excitation signal to determine a scaled high-band excitation signal and determining a second modeled high-band signal based on the scaled high-band excitation signal. The method includes determining gain parameters based on the second modeled high-band signal and the high-band portion of the audio signal.