Abstract:
A device obtains an object-based representation of an audio signal of an audio object. The audio signal corresponds to a time interval. Additionally, the device obtains a representation of a spatial vector for the audio object, wherein the spatial vector is defined in a Higher-Order Ambisonics (HOA) domain and is based on a first plurality of loudspeaker locations. The device generates, based on the audio signal of the audio object and the spatial vector, a plurality of audio signals. Each respective audio signal of the plurality of audio signals corresponds to a respective loudspeaker in a plurality of local loudspeakers at the second plurality of loudspeaker locations different from the first plurality of loudspeaker locations.
Abstract:
In one example, a method includes obtaining a representation of a multi-channel audio signal for a source loudspeaker configuration; obtaining a representation of a plurality of spatial positioning vectors (SPVs), in a Higher-Order Ambisonics (HOA) domain, that are based on a source rendering matrix, which is based on the loudspeaker configuration; and generating a HOA soundfield based on the multi-channel audio signal and the plurality of spatial positioning vectors.
Abstract:
In general, techniques are described for coding a number of code vectors for independent frame of higher order ambisonic coefficients. An audio decoding device comprising a memory and a processor may perform the techniques. The memory may store a first frame of a bitstream and a second frame of the bitstream. The processor may extract, from the first frame, one or more bits indicative of whether the first frame is an independent frame that includes information specifying a number of code vectors to be used when performing vector dequantization with respect to the vector. The processor may also extract, from the first frame without referencing the second frame, the information specifying the number of code vectors.
Abstract:
In general, techniques are described for obtaining spherical harmonic coefficients (SHC). A device comprising a processor and a memory may be configured to perform the techniques. The processor may obtain a set of coefficients of a vector representative a distinct component of a sound field, the vector having been decomposed from SHC representative of the sound field. The processor may obtain a configuration mode by which to extract the coefficients, where the configuration mode indicates that the coefficients include coefficients corresponding to an order greater than an order of a basis function to which one or more of the spherical harmonic coefficients correspond and exclude at least one of the coefficients corresponding to a greater order. The processor may extract the coefficients of the vector based on the obtained configuration mode. The memory may be configured to store the non-zero set of the coefficients of the vector.
Abstract:
In general, techniques are described for obtaining decomposed versions of spherical harmonic coefficients. In accordance with these techniques, a device comprising one or more processors may be configured to determine a first non-zero set of coefficients of a vector that represent a distinct component of a sound field, the vector having been decomposed from a plurality of spherical harmonic coefficients that describe the sound field.
Abstract:
In general, techniques are described for indicating frame parameter reusability for decoding vectors. A device comprising a processor and a memory may perform the techniques. The processor may be configured to obtain a bitstream comprising a vector representative of an orthogonal spatial axis in a spherical harmonics domain. The bitstream may further comprise an indicator for whether to reuse, from a previous frame, at least one syntax element indicative of information used when compressing the vector. The memory may be configured to store the bitstream.
Abstract:
Systems, methods, and apparatus for backward-compatible coding of a set of basis function coefficients that describe a sound field are presented.
Abstract:
In general, techniques are described for compression and decoding of audio data are generally disclosed. An example device for compressing audio data includes one or more processors configured to apply a decorrelation transform to ambient ambisonic coefficients to obtain a decorrelated representation of the ambient ambisonic coefficients, the ambient HOA coefficients having been extracted from a plurality of higher order ambisonic coefficients and representative of a background component of a soundfield described by the plurality of higher order ambisonic coefficients, wherein at least one of the plurality of higher order ambisonic coefficients is associated with a spherical basis function having an order greater than one.
Abstract:
In general, techniques are described for coding of vectors decomposed from higher order ambisonic coefficients. A device comprising a processor and a memory may perform the techniques. The processor may be configured to obtain from a bitstream data indicative of a plurality of weight values that represent a vector that is included in a decomposed version of the plurality of HOA coefficients. Each of the weight values may correspond to a respective one of a plurality of weights in a weighted sum of code vectors that represents the vector and that includes a set of code vectors. The processor may further be configured to reconstruct the vector based on the weight values and the code vectors. The memory may be configured to store the reconstructed vector.
Abstract:
In general, techniques are described for obtaining audio rendering information in a bitstream. A device configured to render higher order ambisonic coefficients comprising a processor and a memory may perform the techniques. The processor may be configured to obtain sparseness information indicative of a sparseness of a matrix used to render the higher order ambisonic coefficients to a plurality of speaker feeds. The memory may be configured to store the sparseness information.