Abstract:
Techniques are described for wireless communication. One method includes performing a plurality of radio resource management (RRM) measurements for a number of active downlink carriers in a shared radio frequency spectrum band; associating each of the RRM measurements with a measurement time indication; and transmitting data corresponding to the RRM measurements and the measurement time indications to a base station. Another method includes receiving an indication of co-located downlink carriers in a shared radio frequency spectrum band; performing a plurality of RRM measurements for the downlink carriers; combining the RRM measurements over a time interval in the shared radio frequency spectrum band based at least in part on the received indication; and transmitting a report based at least in part on the combined RRM measurements to a base station.
Abstract:
Methods, systems, and devices for radio resource management (RRM) measurement and reporting for license assisted access (LAA) cells operating in unlicensed or shared frequency spectrum are described. A user equipment (UE) may receive an RRM measurement configuration including a channel occupancy parameter for measuring neighbor cells of a shared frequency band. The channel occupancy parameter may be used to determine a channel occupancy metric that may be sent to a base station for cell selection. The channel occupancy metric may include an averaged or filtered received signal strength and may be reported for serving cells and/or intra-frequency neighbor cells. A base station may further configure a UE with a discovery reference signals (DRS) measurement timing configuration (DMTC), which may include an extended DMTC search window. The UE may search for DRS transmissions from neighbor cells according to the DMTC.
Abstract:
In wireless communication networks using carrier aggregation, a user equipment (UE) may monitor a downlink radio link quality of secondary cells for an event indicating failure of the communication link with the secondary cell. When a failure event is detected, the UE declares a failure state on the secondary cell. In response to the failure state, the UE may adjust operations related to the secondary component carrier in order to save power and resources.
Abstract:
Methods, systems, and devices are described for early radio link failure (RLF) declaration. A UE may identify a measurement report message (MRM) trigger and initiate an RLF procedure. In the RLF procedure the UE may determine whether a radio link condition indicative of an RLF has been satisfied before an expiration of a timer that is initiated by the MRM trigger. As an example, the UE may determine that a threshold number of uplink radio link signaling messages, such as MRMs, have been transmitted without a radio link control (RLC) acknowledgement (ACK). The UE may declare RLF based on the determination that the radio link condition has been satisfied. In some examples the UE may verify that channel conditions are better for a target cell than for the serving cell, and may declare RLF based further on the channel comparison.
Abstract:
A configurable new radio (NR) RACH procedure that may be executed by a UE and a base station is disclosed. A configuration to determine, by a user equipment, a random access procedure timeline, from multiple random access procedure timelines that each define a different duration between one or more messages that are communicated in a random access procedure can be determined or transmitted. A random access preamble can be received from the UE based on the random access procedure timeline, and a response to the random access preamble can be determined or transmitted based on the random access procedure timeline.
Abstract:
Certain aspects of the present disclosure relate to communication systems, and more particularly, to interpreting a timing advance (TA) command for members of a timing advance group (TAG), such as different uplink component carriers and/or different bandwidth parts, having different numerologies, such as different subarrier spacing (SCS). A method that may be performed by a user equipment (UE) includes receiving, from a base station (BS), a TA command. The UE interprets the TA command differently for different members of a same TAG, associated with different numerologies. The UE applies a timing adjustment when transmitting an uplink transmission to the BS based, at least in part, on the interpretation.
Abstract:
Certain aspects of the present disclosure provide techniques for uplink preemption indication. A method for wireless communication by a user equipment (UE) includes receiving at least one ULPI from a base station (BS) indicating, for each of a plurality of sets of uplink resources, a power level the UE can use for one or more uplink transmissions. The UE can determine one or more power levels indicated by the ULPI for resources allocated for the UE for uplink transmission. The allocated resources may include multiple of the sets of uplink resources. The UE can select the power level to use for uplink transmission using the allocated resources based, at least in part, on the determination. The UE sends or drops the one or more uplink transmissions according to the ULPI. A time duration of the plurality of sets of uplink resources can be longer than a configured ULPI monitoring periodicity.
Abstract:
The present disclosure relates to transmitting and receiving a beam report at a UE and a base station. The base station can configure a cDRX cycle with the UE. Also, the UE can wake up during an off period of the cDRX cycle. The UE can also compare a first metric of at least one of a plurality of candidate beams and a second metric of a current beam for communication with the base station. Additionally, the UE can transmit a beam report to the base station, during the off period, based on the comparison of the first metric of the at least one of the plurality of candidate beams and the second metric of the current beam. The UE can also select, during the off period of the cDRX cycle, the at least one of the plurality of candidate beams for communication with the base station.
Abstract:
Certain aspects of the present disclosure provide techniques for sending uplink control information. A method that may be performed by a user equipment (UE) includes receiving an uplink grant for transmission on a plurality of physical uplink shared channels (PUSCHs), the plurality of PUSCHs being located on different component carriers (CCs); identifying one or more PUSCHs of the plurality of PUSCHs on which uplink control information (UCI) can be transmitted in a slot; assigning PUSCH data to the one or more identified PUSCHs on which the UCI can be transmitted before assigning PUSCH data to remaining PUSCHs of the plurality of PUSCHs; and transmitting the UCI and the PUSCH data in the slot on the assigned PUSCHs.
Abstract:
Methods, systems, and devices for wireless communications are described in which a user equipment (UE) may wake up from a sleep mode of a discontinuous reception (DRX) cycle based on receipt of uplink data. The UE may determine if an elapsed time between a prior receipt of one or more reference signals and an uplink transmission to the base station after waking up from the sleep mode is less than a threshold time value. If the elapsed time is less than the threshold time value, the UE may transmit an uplink transmission associated with the received uplink data prior to receiving one or more reference signals that may be used to update transmission parameters for uplink transmissions. If the elapsed time is at or above the threshold value, the UE may wait to receive the one or more reference signals and update the transmission parameters prior to the uplink transmission.