Abstract:
Apparatuses, systems, and techniques are presented to reduce noise in audio. In at least one embodiment, one or more neural networks are used to determine a noise signal in one or more speech signals.
Abstract:
A method includes implementing an audio framework to be executed on a data processing device with a virtual audio driver component and a User Mode Component (UMC) communicatively coupled to each other. The virtual audio driver component enables modifying an original default audio endpoint device of an application executing on the data processing device to an emulated audio device associated with a new audio endpoint in response to an initiation through the application in conjunction with the UMC. The virtual audio driver component also enables registering the new audio endpoint as the modified default audio endpoint with an operating system executing on the data processing device. Further, the virtual audio driver component enables capturing audio data intended for the original default audio endpoint device at the new audio endpoint following the registration thereof to enable control of the audio data.
Abstract:
A method includes distinctly assigning, through a driver component, each audio channel of multichannel audio data in a memory of a data processing device to one or more audio endpoint device(s) of a number of audio endpoint devices communicatively coupled to the data processing device. Each audio endpoint device of the number of audio endpoint devices is capable of supporting a number of audio channels less than a number of audio channels of the multichannel audio data. The method also includes routing, through a processor of the data processing device communicatively coupled to the memory, audio data related to the each audio channel to the appropriate one or more audio endpoint device(s) based on the assignment through the driver component to enable rendering of the multichannel audio data on the number of audio endpoint devices.