SEMANTIC IMAGE SYNTHESIS FOR GENERATING SUBSTANTIALLY PHOTOREALISTIC IMAGES USING NEURAL NETWORKS

    公开(公告)号:US20200242771A1

    公开(公告)日:2020-07-30

    申请号:US16258322

    申请日:2019-01-25

    Abstract: A user can create a basic semantic layout that includes two or more regions identified by the user, each region being associated with a semantic label indicating a type of object(s) to be rendered in that region. The semantic layout can be provided as input to an image synthesis network. The network can be a trained machine learning network, such as a generative adversarial network (GAN), that includes a conditional, spatially-adaptive normalization layer for propagating semantic information from the semantic layout to other layers of the network. The synthesis can involve both normalization and de-normalization, where each region of the layout can utilize different normalization parameter values. An image is inferred from the network, and rendered for display to the user. The user can change labels or regions in order to cause a new or updated image to be generated.

    Domain Stylization Using a Neural Network Model

    公开(公告)号:US20190244060A1

    公开(公告)日:2019-08-08

    申请号:US16265725

    申请日:2019-02-01

    Abstract: A style transfer neural network may be used to generate stylized synthetic images, where real images provide the style (e.g., seasons, weather, lighting) for transfer to synthetic images. The stylized synthetic images may then be used to train a recognition neural network. In turn, the trained neural network may be used to predict semantic labels for the real images, providing recognition data for the real images. Finally, the real training dataset (real images and predicted recognition data) and the synthetic training dataset are used by the style transfer neural network to generate stylized synthetic images. The training of the neural network, prediction of recognition data for the real images, and stylizing of the synthetic images may be repeated for a number of iterations. The stylization operation more closely aligns a covariate of the synthetic images to the covariate of the real images, improving accuracy of the recognition neural network.

    CREATING AN IMAGE UTILIZING A MAP REPRESENTING DIFFERENT CLASSES OF PIXELS

    公开(公告)号:US20190147296A1

    公开(公告)日:2019-05-16

    申请号:US16188920

    申请日:2018-11-13

    Abstract: A method, computer readable medium, and system are disclosed for creating an image utilizing a map representing different classes of specific pixels within a scene. One or more computing systems use the map to create a preliminary image. This preliminary image is then compared to an original image that was used to create the map. A determination is made whether the preliminary image matches the original image, and results of the determination are used to adjust the computing systems that created the preliminary image, which improves a performance of such computing systems. The adjusted computing systems are then used to create images based on different input maps representing various object classes of specific pixels within a scene.

Patent Agency Ranking