Abstract:
A radio frequency (RF) receiver includes a digital tuning engine; and I-path and Q-path analog filters, tuned by the digital tuning engine. The digital tuning engine gets an I/Q imbalance difference, and the digital tuning engines tunes the I-path analog filter and/or the Q-path analog filter based on the I/Q imbalance difference.
Abstract:
A radio frequency (RF) receiver includes a digital tuning engine; I-path and Q-path analog filters, tuned by the digital tuning engine; and a digital compensation circuit. The digital tuning engine executes a RC (resistor-capacitor) time constant calibration to adjust respective cut-off frequencies of the I-path analog filter and the Q-path analog filter. The digital tuning engine executes a filter mismatch calibration to match the I-path analog filter and the Q-path analog filter. The digital tuning engine executes a filter residual mismatch calibration to match an I-path response from the I-path analog filter to the digital compensation circuit and a Q-path response from the Q-path analog filter to the digital compensation circuit.
Abstract:
A wireless transmitter has a digital baseband module and a radio-frequency (RF) transmitter. The digital baseband module generates a multi-mode modulated signal by using a plurality of digital synthesizers. The RF transmitter has a frequency synthesizer and a digital power amplifier (DPA). The frequency synthesizer generates an oscillation signal with an RF carrier frequency. The DPA generates a multi-standard RF signal according to the multi-mode modulated signal and the oscillation signal.
Abstract:
A method of calibrating an envelope tracking system for a supply voltage for a power amplifier module within a radio frequency (RF) transmitter of a wireless communication unit is described. The method comprising, within at least one signal processing module of the wireless communication unit, applying a training signal comprising an envelope that varies with time to an input of the RF transmitter, receiving at least an indication of instantaneous output signal values for the power amplifier module in response to the training signal, calculating instantaneous gain values based at least partly on the received output power values, and adjusting a mapping function between an instantaneous envelope of a waveform signal to be amplified by the power amplifier module and the power amplifier module supply voltage to achieve a power amplifier module gain, for example that is monotonically increasing as a function of power amplifier output power.