Abstract:
An incremental scheduling scheme is proposed in a wireless communication system with beamforming. In an initial stage (stage-1), coarse scheduling plan is granted via control beam transmission. In a second stage (stage-2), fine scheduling plan is granted via dedicated beam transmission. Such incremental scheduling scheme provides load balancing for overhead channels on control/dedicated beams via stage-2 scheduling. It utilizes dedicated beam transmission that is more resource efficient and more UE-specific. Furthermore, it provides UE natural power-saving opportunities via stage-1 scheduling.
Abstract:
A beamforming system synchronization architecture is proposed to allow a receiving device to synchronize to a transmitting device in time, frequency, and spatial domain in the most challenging situation with very high pathloss. A periodically configured time-frequency resource blocks in which the transmitting device uses the same beamforming weights for its control beam transmission to the receiving device. A pilot signal for each of the control beams is transmitted in each of the periodically configured time-frequency resource blocks. The same synchronization signal can be used for all stages of synchronization including initial coarse synchronization, device and beam identification, and channel estimation for data demodulation.
Abstract:
A method of control signaling in a beamforming system is proposed. A user equipment (UE) receives control beam transmission from a base station using a set of control beams in a beamforming network. Each control beam comprises a set of DL control resource blocks, a set of UL control resource blocks, and an associated set of beamforming weights. The UE selects a control beam for establishing a connection with the base station. The UE then performs random access with the base station using the selected control beam.
Abstract:
A method of downlink channel state information (DL CSI) computation and reporting is proposed to support high velocity in new radio (NR) systems. In a first novel aspect, two CSI reference slots are defined. CSI reference slot for CSI measurement is defined for determining which CSI-RS/SSB occasion(s) is used for computing CSI. CSI reference slot for CSI computation is defined for determining the slot where UE assumes the CSI computation should be based upon the channel at that time onwards. In a second novel aspect, UE can be configured with a CSI computation period consisting of one or N slots and can be divided into multiple sub-periods without overlap. UE can be configured to compute and report wideband CSI and subband CSI for the whole CSI computation period and/or for each sub-period.
Abstract:
In an aspect of the disclosure, a method, a computer-readable medium, and an apparatus are provided. The apparatus may be a UE. The UE detects one or more signals transmitted from a base station in a first unit of a set of units contained in a bandwidth part of an unlicensed carrier, the first unit having contiguous frequency resources. The one or more signals indicating that the base station has occupied the first unit for a first time duration and indicating a schedule of a set of slots in the first time duration for communication with the base station. The UE receives, in a first time slot of the set of slots and from the base station, a control channel.
Abstract:
Various solutions for wake-up signal and preamble design for mobile communications are described. An apparatus, while in a first mode of operation, receives a wake-up signal (WUS) from a network. In response to receiving the WUS, the apparatus switches to a second mode of operation from the first mode of operation. The apparatus then detects a preamble in downlink (DL) transmissions from the network. In response to detecting the preamble, the apparatus monitors a physical downlink control channel (PDCCH) to check for an uplink (UL) transmission grant for the apparatus from the network.
Abstract:
Examples pertaining to precoding-matched channel state information (CSI) feedback in mobile communications are described. An apparatus (e.g., UE) beamforms one or more of a plurality of ports used in reception of a channel state information reference signal (CSI-RS) with one or more precoders that are applied on one or more of the plurality of ports used in reception of a demodulation reference signal (DMRS) or a physical downlink shared channel (PDSCH). The apparatus generates a CSI feedback comprising at least a plurality of channel quality indication (CQIs) with respect to a plurality of hypothesized ranks. The apparatus then transmits the CSI feedback to a network.
Abstract:
A method of providing channel state information (CSI) reference signal (RS) configuration is proposed to support high velocity in new radio (NR) systems. A CSI-RS resource can be configured with a bursty period in which the same CSI-RS resource is repeatedly transmitted over time. Any two repetitions of the CSI-RS resource are not overlapped in time. For periodic and semi-persistent CSI-RS, the repetitions of CSI-RS in the bursty period can be signalled by radio resource control (RRC) signaling. For aperiodic CSI-RS, the CSI-RS repetitions in the bursty period can be indicated by the triggering downlink control information (DCI). UE can acquire Doppler-domain information based on the CSI-RS repetition to facilitate high velocity scenarios in 5G NR systems.
Abstract:
A partial sounding method for sounding-reference-signal (SRS) is proposed. The network node may transmit higher-layer signal configuring a fractional SRS resource for partial sounding in configured resource blocks (RBs) to user equipment (UE). The UE may determine an SRS sequence length and a frequency-domain starting position of the fractional SRS resource based on the higher-layer signal to increase the SRS capacity.
Abstract:
Techniques and examples of efficient detection of a transmission session in New Radio unlicensed spectrum (NR-U) are described. An apparatus (e.g., user equipment (UE)) detects presence of an indication from a base station of a wireless network in an NR-U. The apparatus determines that a transmission opportunity (TXOP) follows the indication responsive to the detecting. The apparatus then receives a downlink (DL) transmission in the NR-U from the base station during the TXOP.