Abstract:
A fuel cell system including an anode chamber having a fuel mixture comprising methanol and water, and a diffusion layer, a fuel source in fluid communication with the anode chamber via a conduit, a cathode chamber having a cathode and a diffusion layer, wherein the diffusion layer is in fluid communication with an oxidizer, and a proton conducting, electrical non-conducting membrane electrolyte separating the chambers and positioned substantially adjacent to said diffusion layers. The membrane includes a catalyst exposed to each of the chambers for initiating chemical reactions to produce electricity. The system also includes a first valve for automatically controlling a flow of fuel from the fuel supply cartridge, where the first valve includes a shape memory alloy.
Abstract:
A feeding device for introducing molten steel into a twin-belt caster having mold walls which move exclusively in the casting direction. The feeding device comprises: a casting unit including a pouring pipe having a mouthpiece at one end which can extend between and form a sealing gap with the mold walls of a twin-belt caster, a first carriage moveable toward and away from a twin-belt caster and having the pouring pipe mounted thereon so that the pouring pipe is rotatable about a horizontal pivot axis and is laterally adjustable transversely to its longitudinal extent; a tundish mounted on a second carriage, which is disposed upstream of the first carriage and is independently moveable toward and away from the first carriage, so that the tundish is adjustable in height; and a compensating pipe for connecting the outlet of the tundish to the other end of the pouring pipe to permit molten steel to flow from the tundish through the pouring pipe. The compensating pipe has respective sealing surfaces at its opposed ends which respectively engage correspondingly shaped sealing surfaces on the other end of the pouring pipe and at the outlet of the tundish in a manner such that the engaging sealing surfaces are moveable relative to one another. The engaging sealing surfaces between the pouring pipe and the compensating pipe preferably form a ball joint and the engaging sealing surfaces between the compensating pipe and the tundish form a further ball joint or are two planar surfaces.
Abstract:
A simplified direct oxidation fuel cell system is provided. The fuel cell is constructed in such a manner that fuel is added to the cell anode as it is consumed and water is evaporated off at cell cathode so that there is no need for recirculation of unreacted fuel at the cell anode or water at the cell cathode. In addition, carbon dioxide generated from the anodic reaction is passively vented out of the system by using a CO2 gas permeable membrane material integrated as part of the anode chamber construction. It is thus possible that, the CO2 separation from the anode fluid occurs without the recirculation of the anode fluid outside the anode chamber. The passive system in which fuel is added as it is consumed and CO2 separated, both without pumping, ultimately will increase net power provided to the load due to low parasitic losses.
Abstract:
Apparatus and methods for the generation of water in a direct oxidation fuel cell. Water, in addition to carbon dioxide and heat, is produced when carbonaceous fuel or fuel solution is oxidized in the presence of air and a suitable catalyst. This oxidation reaction is performed on a surface that allows for the introduction of oxygen in the presence of a catalyst. Water produced can then be directly added to the fuel solution thereby diluting the fuel solution to a desired concentration, or may be separately and then later added to fuel solution for the normal fuel cell operations depending on the permeability of the membrane to water.
Abstract:
A fuel cell diffusion layer for delivering a fuel mixture to the anode face of a catalyzed membrane and for resisting flow of carbon dioxide produced in the anodic reaction back into the associated fuel chamber. The diffusion layer contains either conduits or channels on one aspect thereof to redirect the carbon dioxide generated at the anode in the fuel cell reaction away from the catalyzed membrane and away from the fuel chamber. This avoids the volume replacement by carbon dioxide of fuel mixture in the anode chamber and enhances the concentration of methanol that can be used in the fuel mixture. It also serves to allow only that fuel that is consumed in the reaction to enter the space between the anode face of the catalyzed membrane and the diffusion layer adjacent thereto. The diffusion layer further includes perforations to increase the ability to deliver fuel to the anode aspect of the membrane electrode assembly of the fuel cell. In accordance with another aspect of the invention, the perforations can comprise Nafion-filled capillaries.
Abstract:
A simplified direct oxidation fuel cell system is provided. The fuel cell is constructed in such a manner that fuel is added to the cell anode as it is consumed and water is evaporated off at cell cathode so that there is no need for recirculation of unreacted fuel at the cell anode or water at the cell cathode. In addition, carbon dioxide generated from the anodic reaction is passively vented out of the system by using a CO2 gas permeable membrane material integrated as part of the anode chamber construction. Other embodiments of the invention include a fuel container and delivery assembly.
Abstract:
A fuel cell system including a housing defining an anode chamber and a cathode chamber and including a catalyst, a protonically conductive but electronically non-conductive membrane positioned between the anode chamber and the cathode chamber, a mixing chamber, a fuel chamber in fluid communication with the mixing chamber, and a first conduit having a first end connected to the anode chamber and a second end connected to the mixing chamber. The first conduit directs a fuel-water solution from the mixing chamber to the anode chamber. The system also includes a second conduit having a first end connected to the anode chamber and a second end connected to the mixing chamber, where the second conduit directs effluent from the anode chamber to the mixing chamber. A coalescing surface provided with at least one of said conduits collects effluent gas produced by said fuel cell.