Abstract:
An optical scanner is provided with a carrier, a casing, a driving unit and a transmission unit. The carrier has a connecting unit and an optical system mounted thereon. The casing has a guiding rail formed as integral unit on the interior wall. The guiding rail has at least a fastener for latching onto the connecting unit of the carrier. The transmission unit links up the driving unit and the carrier. The driving unit drives the transmission unit and then the transmission unit pulls the carrier along the guiding rail through the linkage between the connecting unit and the fastener.
Abstract:
A scanner has a light and a scanning module for scanning light from a document and generating an image signal of the document. The scanning module has a plurality of light sensors, and a guiding lens for delivering light from the document to the light sensors. The guiding lens moves along a direction perpendicular to its own normal and may be set on at least a first position and a second position. The guiding lens is first set on the first position, and a reference picture is scanned to obtain a first reference image signal. The guiding lens is then set on the second position, and the reference picture is again scanned to obtain a second reference image signal. The guiding lens is then set to the first position or the second position, according to relative qualities of the first reference image signal and the second reference image signal.
Abstract:
A linear guiding mechanism for a platform type optical scanner. A V-shaped track is installed inside a casing and positioned parallel to the travel path of a carrier chassis containing a system of optical devices. The upper section of the V-shaped track has a pair of support surfaces forming an included angle. The V-shaped track supports a positioning wheel or a positioning bump attached to the carrier chassis. The carrier chassis moves along the longitudinal direction of the V-shaped track when driven by a driving system. The V-shaped track may be constructed from a pair of monorails so that the driving belt may move inside the space between the monorails. An additional positioning structure may attach to the interior sidewall of the casing to serve as a retainer for the chassis in an initial position.
Abstract:
A photographic film scanning device includes an image scanner including a first casing having a transparent top surface and an optical scanning module movably arranged inside the first casing. A film driving assembly includes a second casing having a detachable bottom removably positioned on the top surface of the first casing. A light-transmitting window is defined in the bottom, having a length and a width. A film driving mechanism is arranged inside the second casing, including a film container for containing a length of film and a film spool for windingly receiving the film roll, respectively arranged on opposite longitudinal ends of the window. A motor drives a toothed wheel engaging perforations defined in the film for moving the film across the length of the window. A light source projects light through the film and the window toward the optical scanning module for performing scanning operation of the film.
Abstract:
A light-channeling apparatus for a scanning module comprises a first light-guiding tube, a second light-guiding tube, and a collimating lens positioned inside the first light-guiding tube. The first and second light-guiding tubes are attached to a body casing of the scanning module. The scanning module uses the first light-guiding tube having the collimating lens to channel light from a light source to a scanning region and uses the second light-guiding tube to channel light reflected from the scanning region to a light passage slit on the body casing, to minimize dispersion of light from the light source and keep external light out of the light transmission pathway.
Abstract:
A latch-free button structure and its design method that can be applied to most electronic devices. The button includes a body, a wing plate, a positioning plate and a contact rod. The top end of the wing plate joins with the side edges of the button body and the positioning plate joins with the lower end of the wing plate. The contact rod is attached to the bottom section of the button body. If the height from the bottom of the contact rod to the contact point on the circuit board is B; the height from the bottom section of the button body to the surface of the housing is C; the height of the wing plate is A; the height of the sidewall of the button cover close to the button body is D and the height from the uppermost section of the button body to the top end of the wing plate is E, the value of A, B, C, D and E must follow the inequality relationships E−B>D, E−D>A, and D>A≧C≧B.
Abstract:
A lamp module comprising a lamp holder and a lamp is provided. The lamp holder has a structure with a curved arc surface such that the ends of the structure are inwardly converging. Light from the lamp impinging upon the curved arc surface is scattered out to a linear dimension greater than the original length of the lamp. The scattered light is projected onto the light-inlet surface of a light-guiding plate so that light emerges from the light-emitting surface as a planar light source.
Abstract:
A scanning method for detecting documents is provided an optical scanning device. The optical scanning device is capable of scanning an object by a reflective scanning mode or a transmittal scanning mode. Then obtaining an image signal of the object by either the reflective scanning mode or a transmittal scanning mode with the retrieved scanning mod. Comparing the image signal with a pre-determined signal will result in an implementation from one of the reflective scanning mode or the transmittal scanning mode.
Abstract:
An installation for increasing the usable scanning range along the axial direction of a light source. The installation includes a linear light source and a light-channeling panel. The linear light source has a light axis whose brightness near the mid-portion is higher than the brightness level on either side. The light-channeling panel is adjacent to the linear light source and is capable of concentrating more light in the end sections rather than the mid-portion of the light axis. The light-channeling panel is made from a plurality of panels, each made from materials having different light transparencies. The light transparency of the light-channeling panel near the central section of the light axis is lower than the light transparency at the end sections of the light axis. Hence, after light from the linear light source has passed through the light-channeling panel, a band of light having a more homogenous brightness level than the linear light source is produced.