Abstract:
Embodiments of the present application relate generally to electronic hardware, computer software, wireless communications, network communications, wearable, hand held, and portable computing devices for facilitating communication of information and presentation of media. An electrically conductive substrate, such as a sheet of metal or metal alloy, for example, includes an active antenna formed by a slot or opening formed in the substrate, and also includes at least one separate passive slot or opening (e.g., a passive slit) formed in the substrate. The active antenna may be intentionally detuned from one or more target frequencies (e.g., 802.11, 2.4 GHz, 5 GHz) such that the active antenna is not optimized (e.g., is not tuned) for the one or more target frequencies. One portion of the active antenna may be electrically coupled with a ground potential. Another portion of the active antenna may be electrically coupled with a RF receiver, transmitter, or transceiver.
Abstract:
Embodiments of the present application relate generally to electronic hardware, computer software, wireless communications, network communications, wearable, hand-held, and portable computing devices for facilitating communication of information and presentation of media. An electrically conductive substrate (e.g., a metal or metal alloy) includes an antenna formed by a slot or opening formed in the substrate, and also includes at least one separate passive slot or opening (e.g., a passive slit) formed in the substrate. The antenna may be intentionally detuned from one or more target frequencies (e.g., 802.11, 2.4 GHz, 5 GHz) such that the antenna is not optimized (e.g., is not tuned) for the one or more target frequencies. One portion of the antenna may be electrically coupled with a ground potential. Another portion of the antenna may be electrically coupled with a RF receiver, transmitter, or transceiver. The antenna may be an active antenna, a passive antenna or both.
Abstract:
Mobile device speaker control may include: monitoring one or more devices coupled (e.g., wired or wirelessly) with a data network, receiving one or more data packets from each of the one or more devices, filtering received data packets by evaluating a received signal strength (e.g., RSSI) of the received packets. The received packets may be ordered in a priority based on a value, and comparing the received signal strength of each of the received packets to a threshold to determine whether the one or more devices are to perform an action; and/or detecting a device within a proximity of a speaker box coupled with a data network, filtering a data packet received from the device to determine a received signal strength associated with the device, comparing the received signal strength to a threshold, and determining whether an action is to be performed based on a result of the comparing.
Abstract:
An approach is provided for user interaction via transponders (e.g., near field communication (NFC) tag, radio frequency identification (RFID) tag, or contactless card) disposed on a dynamically reconfigurable display. Each transponder corresponds to an area of the display that is associated with one or more actions. The actions are dynamically updated based at least in part on the content presented on the respective area of the display. A user equipment containing a transponder reader detects a signal from one of the transponders to trigger the corresponding action.