Abstract:
A bundled tube fuel injector includes a fuel distribution module, a tube bundle having a plurality of pre-mix tubes that extend in parallel downstream from the fuel distribution module and a support plate disposed substantially adjacent to the fuel distribution manifold. The plurality of pre-mix tubes extends through the support plate. A retention sleeve is coupled to the support plate at a first end. A second end of the retention sleeve includes a plurality of radially extending retention features that are circumferentially arranged around the second end. The bundled tube fuel injector also includes an aft plate having a retention collar. The retention collar is configured to engage with the retention features. The retention sleeve and the retention collar partially define a cartridge passage that extends through the bundled tube fuel injector.
Abstract:
A method for disassembling a bundled tube fuel injector includes decoupling an aft plate from a fuel distribution module of the bundled tube fuel injector, where the aft plate is disposed at a downstream end of the bundled tube fuel injector. The method also includes removing the aft plate from the bundled tube fuel injector to expose a portion of a plurality of pre-mix tubes so as to allow for inspection repair and/or replacement of one or more of the plurality of pre-mix tubes.
Abstract:
A plurality of substantially identical, thermally and/or atmospherically isolated modules can be employed to effect a treatment process. Each module can include a thermal system and/or atmospheric control system to effect a step of a treatment process, such as a heat treatment process for metal articles, particularly heat treatment and/or welding of parts made from so-called “super allows.” The module control systems can communicate and/or cooperate to carry out a process.
Abstract:
A bundled tube fuel injector includes a fuel distribution module, a tube bundle having a plurality of pre-mix tubes that extend in parallel downstream from the fuel distribution module and a support plate disposed substantially adjacent to the fuel distribution manifold. The plurality of pre-mix tubes extends through the support plate. A retention sleeve is coupled to the support plate at a first end. A second end of the retention sleeve includes a plurality of radially extending retention features that are circumferentially arranged around the second end. The bundled tube fuel injector also includes an aft plate having a retention collar. The retention collar is configured to engage with the retention features. The retention sleeve and the retention collar partially define a cartridge passage that extends through the bundled tube fuel injector.
Abstract:
A bundled tube fuel injector includes an outer band that circumferentially surrounds a fuel plenum defined within the bundled tube fuel injector. The outer band includes a forward end portion that is axially separated from an aft end portion. A plurality of pre-mix tubes extends through the fuel plenum substantially parallel to one another. A first segment of the plurality of pre-mix tubes is circumferentially surrounded by the outer band. An outer shroud extends circumferentially around a second segment of the pre-mix tubes. The outer shroud includes a forward portion and an aft portion. The aft end portion of the outer band is coupled to the forward portion of the outer shroud via a plurality of fasteners for enhanced assembly and reparability.
Abstract:
Various aspects include systems and methods for analyzing materials in additive manufacturing processes. In some cases, a system includes: an additive manufacturing (AM) printer for printing an AM object, the AM printer including a raw material chamber and a build chamber; a control system coupled with the AM printer configured to control the printing of the AM object; and a material analysis system coupled with the control system and the AM printer, the material analysis system configured to analyze a raw material obtained directly from at least one of the raw material chamber or the build chamber for a defect prior to, or contemporaneously with, additively manufacturing the AM component.
Abstract:
Apparatuses and systems for rotatably engaging an additive manufacturing build plate are disclosed. An apparatus may include: a height adjustable platform; a rotatable member coupled to the height adjustable platform; an alignment member coupled to a first end of the rotatable member; and first and second coupling members each extending from the first radial end of the alignment member wherein the first and second coupling members are oriented substantially parallel to the rotatable member.
Abstract:
Various aspects include systems and methods for analyzing materials in additive manufacturing processes. In some cases, a system includes: an additive manufacturing (AM) printer for printing an AM object, the AM printer including a raw material chamber and a build chamber; a control system coupled with the AM printer configured to control the printing of the AM object; and a material analysis system coupled with the control system and the AM printer, the material analysis system configured to analyze a raw material obtained directly from at least one of the raw material chamber or the build chamber for a defect prior to, or contemporaneously with, additively manufacturing the AM component.
Abstract:
Aspects of the disclosure include apparatuses and systems for rotatably engaging an additive manufacturing build plate. An apparatus according to embodiments of the present disclosure can include: a height adjustable platform; a rotatable member coupled to the height adjustable platform; an alignment member coupled to a first end of the rotatable member; and first and second coupling members each extending from the first radial end of the alignment member wherein the first and second coupling members are oriented substantially parallel to the rotatable member.
Abstract:
Hybrid additive manufacturing methods include building a green state additive structure, wherein building the green state additive structure comprises iteratively binding together a plurality of layers of additive material using a binder, and joining the green state additive structure to a base structure to form a hybrid article.