SYSTEM AND METHOD FOR AUTOMATIC MODEL IDENTIFICATION AND CREATION WITH HIGH SCALABILITY
    21.
    发明申请
    SYSTEM AND METHOD FOR AUTOMATIC MODEL IDENTIFICATION AND CREATION WITH HIGH SCALABILITY 审中-公开
    用于自动识别和创建具有高可缩放性的系统和方法

    公开(公告)号:US20140189702A1

    公开(公告)日:2014-07-03

    申请号:US13730392

    申请日:2012-12-28

    CPC classification number: G06F9/5027

    Abstract: A system includes a library of algorithms, and a request module configured to receive an execution request. The system also includes a job scheduler/optimizer module configured to select algorithms from the library and to create at least one execution job based on the algorithms and the execution request. The system further includes a resource module configured to determine execution computing resources from multiple computing sources, including internal computing resources and external computing resources. The system also includes an executor module configured to transmit an execution job to the computing resources.

    Abstract translation: 系统包括算法库和被配置为接收执行请求的请求模块。 该系统还包括作业调度器/优化器模块,配置为从库中选择算法,并且基于算法和执行请求创建至少一个执行作业。 该系统还包括资源模块,该资源模块被配置为从多个计算源确定执行计算资源,包括内部计算资源和外部计算资源。 该系统还包括被配置为将执行作业发送到计算资源的执行器模块。

    METHODS AND SYSTEMS FOR IDENTIFYING A PRECURSOR TO A FAILURE OF A COMPONENT IN A PHYSICAL SYSTEM
    22.
    发明申请
    METHODS AND SYSTEMS FOR IDENTIFYING A PRECURSOR TO A FAILURE OF A COMPONENT IN A PHYSICAL SYSTEM 审中-公开
    将前体识别为物理系统中组分失效的方法和系统

    公开(公告)号:US20140188777A1

    公开(公告)日:2014-07-03

    申请号:US13728572

    申请日:2012-12-27

    CPC classification number: G06N5/04 G06F11/008

    Abstract: A computer-implemented system for identifying a precursor to a failure of a particular type of component in a physical system is provided. The physical system includes sensors coupled to the physical system. The computer-implemented system includes a computing device, a database, a processor, and a memory device. The memory device includes historical data including sensor measurements. When instructions are executed by the processor, the processor receives the historical data from the memory device. The processor generates a predictive model. The predictive model uses, as inputs, sensor measurements in the historical data. The predictive model is able to differentiate between sensor measurements taken before the repair event and those taken after the repair event without a time of the repair event being an input to the predictive model. The processor designates at least one sensor measurements used as inputs to the predictive model as precursors to the failure of the component.

    Abstract translation: 提供了一种用于识别物理系统中特定类型的组件的故障的前兆的计算机实现的系统。 物理系统包括耦合到物理系统的传感器。 计算机实现的系统包括计算设备,数据库,处理器和存储设备。 存储器件包括包括传感器测量的历史数据。 当处理器执行指令时,处理器从存储器件接收历史数据。 处理器生成预测模型。 预测模型使用历史数据中的传感器测量作为输入。 该预测模型能够区分在修复事件之前进行的传感器测量与在修复事件之后进行的传感器测量之间,而没有修复事件的时间是预测模型的输入。 处理器指定用作预测模型的输入的至少一个传感器测量值作为组件故障的前兆。

Patent Agency Ranking