Abstract:
A system and method of self-calibrated correction for residual phase in phase-contrast magnetic resonance (PCMR) imaging data. The method includes receiving PCMR image data from an MR scanner system, segmenting static tissue from non-static cardiovascular elements of the image data, calculating a non-linear fitted-phase basis function, the non-linear fitted-phase basis function based on system artifacts of the PCMR system, adding the non-linear fitted-phase basis function to linear fit terms, and subtracting the result of the adding step from the PCMR imaging data. The system includes a PCMR scanning apparatus configured to provide PCMR image data, a scanner control circuit configured to control the scanning apparatus during image acquisition, the scanner control circuitry in communication with a control processor, the control processor configured to execute computer-readable instructions that cause the control processor to perform the method. A non-transitory computer-readable medium is also disclosed.
Abstract:
Magnetic resonance imaging systems and methods are provided. A method includes applying a slice selection gradient perpendicular to a desired slice plane and applying, substantially simultaneously with the slice selection gradient, a radiofrequency nuclear magnetic resonance excitation pulse having a bandwidth corresponding to the desired slice plane and a frequency corresponding to the frequency of protons present in the desired slice plane. The method also includes applying, during an encoding period and in a first direction, a phase encoding gradient having a phase encoding portion and a shearing portion and applying, during the readout period and in a second direction perpendicular to the first direction, a frequency encoding gradient having a portion having substantially the same shape as the shearing portion of the phase encoding gradient.
Abstract:
A magnetic resonance imaging method includes generating spatially resolved fiber orientation distributions (FODs) from magnetic resonance signals acquired from a patient tissue using a plurality of diffusion encodings, each acquired magnetic resonance signal corresponding to one of the diffusion encodings and being representative of a three-dimensional distribution of displacement of magnetic spins of gyromagnetic nuclei present in each imaging voxel. Generating the spatially resolved FODs includes performing generalized spherical deconvolution using the acquired magnetic resonance signals and a modeled tissue response matrix (TRM) to reconstruct the spatially resolved FODs. The method also includes using the spatially resolved FODs to generate a representation of fibrous tissue within the patient tissue.
Abstract:
A magnetic resonance (MR) imaging method performed by an MR imaging system includes acquiring MR data in multiple shots and multiple acquisitions (NEX), separately reconstructing the component magnitude and phase of images corresponding to the multiple shots and multiple NEX, removing the respective phase from each of the images, and combining, after removal of the respective phase, the shot images and the NEX images to produce a combined image.
Abstract:
The system and method of the invention combines target image intensity into a maximum likelihood estimate (MLE) framework as in STAPLE to take advantage of both intensity-based segmentation and statistical label fusion based on atlas consensus and performance level, abbreviated iSTAPLE. The MLE framework is then solved using a modified expectation-maximization algorithm to simultaneously estimate the intensity profiles of structures of interest as well as the true segmentation and atlas performance level. The iSTAPLE greatly extends the use of atlases such that the target image need not have the same image contrast and intensity range as the atlas images.
Abstract:
A method of compressed sensing for multi-shell magnetic resonance imaging includes obtaining magnetic resonance imaging data, the data being sampled along multi-shell spherical coordinates, the spherical coordinates coincident with a plurality of spokes that converge at an origin, constructing a symmetric shell for each respective sampled multi-shell to create a combined set of data, performing a three-dimensional Fourier transform on the combined set of data to reconstruct an image, and de-noising the reconstructed image by iteratively applying a sparsifying transform on non-sampled data points of neighboring shells. The method can also include randomly under-sampling the imaging data to create missing data points. A system configured to implement the method and a non-transitory computer readable medium are also disclosed.
Abstract:
Systems and methods for correcting magnetic resonance (MR) data are provided. One method includes receiving the MR data and correcting errors present in the MR data due to non-uniformities in magnetic field gradients used to generate the diffusion weighted MR signals. The method also includes correcting errors present in the MR data due to concomitant gradient fields present in the magnetic field gradients by using one or more gradient terms. At least one of the gradient terms is corrected based on the correction of errors present in the MR data due to the non-uniformities in the magnetic field gradients.
Abstract:
A magnetic resonance (MR) imaging method includes acquiring MR signals having phase and magnitude at q-space locations using a diffusion sensitizing pulse sequence performed on a tissue of interest, wherein the acquired signals each include a set of complex Fourier encodings representing a three-dimensional displacement distribution of the spins in a q-space location. The signals each include information relating to coherent motion and incoherent motion in the q-space location. The method also includes determining a contribution by coherent motion to the phase of the acquired MR signals; removing the phase contribution attributable to coherent motion from the acquired MR signals to produce a complex data set for each q-space location and an image of velocity components for each q-space location; and producing a three-dimensional velocity image from the image of the velocity components.