Abstract:
A system for inductively communicating signals in a magnetic resonance imaging system is presented. The system includes first array of primary coils configured to acquire data from a patient positioned on a patient cradle. Furthermore, the system includes a second array of secondary coils operatively coupled to the first array of primary coils. Moreover, the system includes a third array of tertiary coils disposed at a determined distance from the second array of secondary coils. In addition, the system includes a tuning unit operatively coupled to the third array of tertiary coils by a cable having a quarter-wave electrical wavelength and configured to control the first array of primary coils through impedance transformation, where the second array of secondary coils is configured to inductively communicate the acquired data to the third array of tertiary coils.
Abstract:
A method is provided that includes acquiring coil data from a magnetic resonance imaging device. The coil data includes undersampled k-space data. The method includes processing the coil data using an image reconstruction technique to generate an initial undersampled image. The method includes generating a reconstructed image based on the coil data, the initial undersampled image, and multiple iterative blocks of a residual deep-learning image reconstruction network. A first iterative block of the residual deep-learning image reconstruction network receives the initial undersampled image. Each of the multiple iterative blocks includes a data-consistency unit that preserves the fidelity of the coil data in a respective output of a respective iterative block utilizing zeroed data consistency. The initial undersampled image is added to an output of the last iterative block via a residual connection. The residual deep-learning image reconstruction network is a neural network trained using previously acquired coil data.
Abstract:
A magnetic resonance imaging method includes generating spatially resolved fiber orientation distributions (FODs) from magnetic resonance signals acquired from a patient tissue using a plurality of diffusion encodings, each acquired magnetic resonance signal corresponding to one of the diffusion encodings and being representative of a three-dimensional distribution of displacement of magnetic spins of gyromagnetic nuclei present in each imaging voxel. Generating the spatially resolved FODs includes performing generalized spherical deconvolution using the acquired magnetic resonance signals and a modeled tissue response matrix (TRM) to reconstruct the spatially resolved FODs. The method also includes using the spatially resolved FODs to generate a representation of fibrous tissue within the patient tissue.
Abstract:
A magnetic resonance (MR) imaging method performed by an MR imaging system includes acquiring MR data in multiple shots and multiple acquisitions (NEX), separately reconstructing the component magnitude and phase of images corresponding to the multiple shots and multiple NEX, removing the respective phase from each of the images, and combining, after removal of the respective phase, the shot images and the NEX images to produce a combined image.
Abstract:
Exemplary embodiments of the present disclosure are directed to scheduling positron emission tomography (PET) scans for a combined PET-MRI scanner based on an acquisition of MR scout images of a subject. An anatomy and orientation of the subject can be determined based on the MR scout images and the schedule for acquiring PET scans of the subject can be determined from the anatomy of the subject. The schedule generated using exemplary embodiments of the present disclosure can specify a sequence of bed positions, scan durations at each bed position, and whether respiratory gating will be used at one or more of the bed positions.
Abstract:
A method of compressed sensing for multi-shell magnetic resonance imaging includes obtaining magnetic resonance imaging data, the data being sampled along multi-shell spherical coordinates, the spherical coordinates coincident with a plurality of spokes that converge at an origin, constructing a symmetric shell for each respective sampled multi-shell to create a combined set of data, performing a three-dimensional Fourier transform on the combined set of data to reconstruct an image, and de-noising the reconstructed image by iteratively applying a sparsifying transform on non-sampled data points of neighboring shells. The method can also include randomly under-sampling the imaging data to create missing data points. A system configured to implement the method and a non-transitory computer readable medium are also disclosed.
Abstract:
Systems and methods for correcting magnetic resonance (MR) data are provided. One method includes receiving the MR data and correcting errors present in the MR data due to non-uniformities in magnetic field gradients used to generate the diffusion weighted MR signals. The method also includes correcting errors present in the MR data due to concomitant gradient fields present in the magnetic field gradients by using one or more gradient terms. At least one of the gradient terms is corrected based on the correction of errors present in the MR data due to the non-uniformities in the magnetic field gradients.
Abstract:
A magnetic resonance (MR) imaging method includes acquiring MR signals having phase and magnitude at q-space locations using a diffusion sensitizing pulse sequence performed on a tissue of interest, wherein the acquired signals each include a set of complex Fourier encodings representing a three-dimensional displacement distribution of the spins in a q-space location. The signals each include information relating to coherent motion and incoherent motion in the q-space location. The method also includes determining a contribution by coherent motion to the phase of the acquired MR signals; removing the phase contribution attributable to coherent motion from the acquired MR signals to produce a complex data set for each q-space location and an image of velocity components for each q-space location; and producing a three-dimensional velocity image from the image of the velocity components.
Abstract:
A system and method is disclosed for tracking a moving object using magnetic resonance imaging. The technique includes acquiring a scout image scan having a number of image frames and extracting non-linear motion parameters from the number of image frames of the scout image scan. The technique includes prospectively shifting slice location using the non-linear motion parameters between slice locations while acquiring a series of MR images. The system and method are particularly useful in tracking coronary artery movement during the cardiac cycle to acquire the non-linear components of coronary artery movement during a diastolic portion of the R-R interval.
Abstract:
The techniques discussed herein relate to a reduced acoustic noise and vibration magnetic resonance imaging (MRI) acquisition. In certain implementations acoustic noise levels for one or more MRI pulse sequences are characterized and modified by limiting the frequencies and amplitudes of the gradient waveforms so as to produce less noise and vibration when the modified waveform is used during an MRI examination. In this manner, relatively low sound pressure levels can be attained.