Abstract:
An image inspection computing device is provided. The device includes a memory device and at least one processor. The at least one processor is configured to receive at least one sample image of a first component, wherein the at least one sample image of the first component does not include defects, store, in the memory, the at least one sample image, and receive an input image of a second component. The at least one processor is also configured to generate an encoded array based on the input image of the second component, perform a stochastic data sampling process on the encoded array, generate a decoded array, and generate a reconstructed image of the second component, derived from the stochastic data sampling process and the decoded array. The at least one processor is further configured to produce a residual image, and identify defects in the second component.
Abstract:
The present approach relates to the use of trained artificial neural networks, such as convolutional neural networks, to classify vascular structures, such as using a hierarchical classification scheme. In certain approaches, the artificial neural network is trained using training data that is all or partly derived from synthetic vascular representations.
Abstract:
Disclosed are novel computer-implemented methods for creating a blood vessel map of a biological tissue. The methods comprise the steps of, accessing image data corresponding to multi-channel multiplexed image of a fluorescently stained biological tissue manifesting expression levels of a primary marker and at least one auxiliary marker of blood vasculature, and extracting features of blood vessels using the primary marker as an input to create a single channel segmentation of the blood vessels. The method further comprises the steps of extracting features of blood vessels using the auxiliary marker to create auxiliary channels as a second input and apply multi-channel blood vessel enhancement. Blood vessel maps are created using the features and tracing the blood vasculature by iteratively extending the centerlines of the initial segmentation using statistical models and geometric rules.
Abstract:
Improved systems and methods for the analysis of digital images are provided. More particularly, the present disclosure provides for improved systems and methods for the analysis of digital images of biological tissue samples. Exemplary embodiments provide for: i) segmenting, ii) grouping, and iii) quantifying molecular protein profiles of individual cells in terms of sub cellular compartments (nuclei, membrane, and cytoplasm). The systems and methods of the present disclosure advantageously perform tissue segmentation at the sub-cellular level to facilitate analyzing, grouping and quantifying protein expression profiles of tissue in tissue sections globally and/or locally. Performing local-global tissue analysis and protein quantification advantageously enables correlation of spatial and molecular configuration of cells with molecular information of different types of cancer.
Abstract:
A method of segmenting a digital image of biological tissue includes accessing a ranking model calculated from training data representing shapes of conforming and non-conforming biological unit exemplars. The ranking model may include support vectors defining a hyperplane in a vector space. The method further includes accessing image data representing the digital image, identifying a first shape and a set of second constituent shapes in the digital image, wherein the first shape comprises a union of the set of second constituent shapes, determining a rank of a first data point in the image data corresponding to the first shape and a rank of a second data point in the image data corresponding to the set of second constituent shapes into the vector space, and segmenting the digital image using the first shape or the set of second constituent shapes based on which data point has a greater respective rank.