Abstract:
A learning method for an auto-encoder is performed by a computer. The method includes: by using a discriminator configured to generate an estimated label based on a feature value generated by an encoder of an auto-encoder and input data, causing the discriminator to learn such that a label corresponding the input data and the estimated label are matched; and by using the discriminator, causing the encoder to learn such that the label corresponding to the input data and the estimated label are separated.
Abstract:
An optional array in a memory includes an array having blocks each including an address word and a data word, and a boundary that is a position where a ratio between the numbers of unwritten blocks in M area and written blocks in W area is an integer ratio. The controlling process includes when a second write for writing a special value in a written block in the second area is invoked, executing a shrink process of shifting the boundary to shrink the first area; in a case where the first adjacent block at the boundary is a written block, storing an address of the first adjacent block and of a first link destination block forming a link with the write destination block in address words of the first link destination block and of the first adjacent block respectively to form a link.
Abstract:
According to one aspect, a computer-readable recording medium stores therein an extracting program 330a causing a computer to execute a process. The process includes based on event data obtained by associating a plurality of events stored in a storage unit and an occurrence time of each event, sequentially adding an event to a first pattern obtained by associating the plurality of events and the occurrence order of each event, and sequentially generating a second pattern which includes the first pattern and occurs in the event data; and extracting a pattern which satisfies a predetermined condition from the generated second pattern.
Abstract:
A method for detecting an abnormal transition pattern from a transition pattern includes: first extracting an episode pattern with an appearance frequency greater than or equal to a first frequency from an episode pattern represented with a description form so as to include a first transition pattern and a second transition pattern differing in an order of a part of items from the first transition pattern to have a complementary relation thereto; second extracting a third transition pattern with an appearance frequency greater than or equal to a second frequency from the transition pattern; and specifying a transition pattern other than the third transition pattern from transition patterns included in the extracted episode pattern, and determining an abnormal transition pattern based on the transition pattern specified in the specifying when the third transition pattern includes a fourth transition pattern corresponding to the extracted episode pattern in the first extracting.
Abstract:
A non-transitory computer-readable recording medium has stored therein a data gathering program executable by one or more computers, the data gathering program including: performing data augmentation on unlabeled data; providing a specification label to a group of augmented data pieces generated by the data augmentation, the specification label indicating that labels of the augmented data pieces all match; and providing, when a label for one data piece of the augmented data pieces is determined, the label to one or more data pieces each provided with a specification label that is same as a specification label of the one data piece.
Abstract:
A non-transitory computer-readable storage medium storing an estimation program that causes a computer to execute a process includes specifying representative points of each of training clusters that corresponds to each of labels targeted for estimation; setting boundaries between each of input clusters under a condition that a number of the input clusters and a number of the representative points coincide with each other, the input clusters being generated by clustering in a feature space for input data; acquiring estimation results for the labels with respect to the input data based on a correspondence relationship between the input clusters and the training clusters based on the boundaries; and estimating determination accuracy for the labels by using the machine learning model with respect to the input data based on the estimation results.
Abstract:
A machine learning method includes: calculating, by a computer, a first loss function based on a first distribution and a previously set second distribution, the first distribution being a distribution of a feature amount output from an intermediate layer when first data is input to an input layer of a model that has the input layer, the intermediate layer, and an output layer; calculating a second loss function based on second data and correct data corresponding to the first data, the second data being output from the output layer when the first data is input to the input layer of the model; and training the model based on both the first loss function and the second loss function.
Abstract:
An anomaly detection apparatus performs training for the generator and the discriminator such that the generator maximizes a discrimination error of the discriminator and the discriminator minimizes the discrimination error The anomaly detection apparatus stores, while the training is being performed, a state of the generator that is half-trained and satisfies a pre-set condition, and retrains the discriminator by using an image generated by the half-trained generator that has the stored state.
Abstract:
A learning method executed by a computer, the learning method includes: learning parameters of a machine learning model having intermediate feature values by inputting a plurality of augmented training data, which is generated by augmenting original training data, to the machine learning model so that specific intermediate feature values, which are calculated from specific augmented training data augmented from a same original training data, become similar to each other.
Abstract:
A learning method executed by a computer, the learning method including augmenting original training data based on non-stored target information included in the original training data to generate a plurality of augmented training data, generating a plurality of intermediate feature values by inputting the plurality of augmented training data to a learning model, and learning a parameter of the learning model such that, with regard to the plurality of intermediate feature values, each of the plurality of intermediate feature values generated from a plurality of augmented training data, augmented from reference training data, becomes similar to a reference feature value.