Abstract:
A device and method for detecting faults in a shield of an electrosurgical instrument is described. The device has a relay configured to selectively interrupt power to the electrosurgical instrument, monitoring circuitry configured to monitor a shield in the electrosurgical instrument, control circuitry to control the relay, and a battery power source. The monitoring circuitry has an envelope detector and a detected average shield current detector. The monitoring circuitry is configured to compare a shield current peak value to a shield current peak threshold value, and to compare a detected average shield current value to a detected average shield current threshold value. The device is further configured to operatively couple an active electrode of an electrosurgical instrument and a return electrode to an electrosurgical generator.
Abstract:
A boot for an articulable electrosurgical instrument having a conductor is disclosed. The boot has: a first layer having a flexible substantially non-conductive material; a second layer disposed on the first layer, the second layer having a flexible conductive medium configured to be electrically coupled to at least one shield conductor, whereby the boot is configured to transmit normal current and fault current to a reference potential; and a third layer disposed on the second layer, the third layer having a flexible non-conductive material.
Abstract:
A system and method for detecting faults within an electrosurgical instrument having a shield and an active electrode uses multiple possible fault conditions. In one embodiment the monitoring system comprises an electrosurgical generator coupled to the electrosurgical instrument and adapted to deliver power to the active electrode of the electrosurgical instrument, monitoring circuitry coupled to the electrosurgical generator and the electrosurgical instrument.
Abstract:
A device and method for detecting faults in a shield of an electrosurgical instrument is described. The device has a relay configured to selectively interrupt power to the electrosurgical instrument, monitoring circuitry configured to monitor a shield in the electrosurgical instrument, control circuitry to control the relay, and a battery power source. The monitoring circuitry has an envelope detector and an detected average shield current detector. The monitoring circuitry is configured to compare a shield current peak value to a shield current peak threshold value, and to compare an detected average shield current value to an detected average shield current threshold value. The device is further configured to operatively couple an active electrode of an electrosurgical instrument and a return electrode to an electrosurgical generator.