Abstract:
Disclosed herein are a method and apparatus for measuring video quality based on a perceptually sensitive region. The quality of video may be measured based on a perceptually sensitive region and a change in the perceptually sensitive region. The perceptually sensitive region includes a spatial perceptually sensitive region, a temporal perceptually sensitive region, and a spatio-temporal perceptually sensitive region. Perceptual weights are applied to a detected perceptually sensitive region and a change in the detected perceptually sensitive region. Distortion is calculated based on the perceptually sensitive region and the change in the perceptually sensitive region, and a result of quality measurement for a video is generated based on the calculated distortion.
Abstract:
Disclosed herein are a video decoding method and apparatus and a video encoding method and apparatus. In quantization and dequantization, multiple quantization methods and multiple dequantization methods may be used. The multiple quantization methods include a variable-rate step quantization method and a fixed-rate step quantization method. The variable-rate step quantization method may be a quantization method in which an increment in a quantization step depending on an increase in a value of a quantization parameter by 1 is not fixed. The fixed-rate step quantization method may be a quantization method in which the increment in the quantization step depending on the increase of the value of the quantization parameter by 1 is fixed.
Abstract:
Disclosed herein are a method and apparatus that adaptively perform encoding and decoding based on image quality. An encoding apparatus may determine optimal Frames Per Second (FPS) for a video and may encode the video based on the determined FPS. Further, the encoding apparatus may provide improved temporal scalability. A decoding apparatus may select a frame to be displayed from among frames of a video depending on a required minimum satisfied user ratio. Through the selection of the frame, the decoding apparatus may provide improved temporal scalability.
Abstract:
The present invention discloses an encoding apparatus using a Discrete Cosine Transform (DCT) scanning, which includes a mode selection means for selecting an optimal mode for intra prediction; an intra prediction means for performing intra prediction onto video inputted based on the mode selected in the mode selection means; a DCT and quantization means for performing DCT and quantization onto residual coefficients of a block outputted from the intra prediction means; and an entropy encoding means for performing entropy encoding onto DCT coefficients acquired from the DCT and quantization by using a scanning mode decided based on pixel similarity of the residual coefficients.