Abstract:
Disclosed are a low-power communication method and a low-power communication apparatus in a communication system. A low-power station may comprise a processor; a memory storing at least one instruction executable by the processor; a receiver for receiving a WUR PPDU according to the at least one instruction; and a transceiver for transmitting and receiving a legacy PPDU according to the at least one instruction, and the at least one instruction may be configured to cause the receiver to receive a WUR wake-up frame from the access point in an on-duration within a WUR duty cycle period; when the WUR wake-up frame is received, cause the processor to transmit a first signal requesting wake-up to the transceiver; and when the first signal is received, cause the transceiver to transition from a sleep state to a wake-up state at a TWT configured between the access point and the low-power station.
Abstract:
Disclosed is a method for communicating in a network supporting licensed and unlicensed bands. A terminal operation method comprises the steps of: detecting a control channel of a subframe #n transmitted from a base station; obtaining, from the control channel, a DCI for an uplink grant; executing channel sensing on the basis of channel connection-related information included in the DCI; and transmitting, to the base station, a subframe #(n+1) if the result of executing channel sensing is an idle state. Thus, the performance of the communication network may be improved.
Abstract:
Disclosed is a method for scheduling an uplink transmission in a communication network. A terminal operation method comprises the steps of: detecting a control channel of a subframe #n transmitted from a base station; receiving an uplink grant from the control channel; and transmitting, to the base station, a plurality of subframes scheduled by the uplink grant. Thus, the performance of the communication network may be improved.
Abstract:
Provided is a PIM detection apparatus including: a tone signal input unit configured to apply a tone signal having a first frequency characteristic to a test target apparatus; a sequence signal input unit configured to apply a sequence signal having a second frequency characteristic to the test target apparatus; a PIM detector configured to receive a Passive Intermodulation (PIM) signal from the test target apparatus, and to detect a delay time and a size of the PIM signal based on the sequence signal; and a PIM position determiner configured to determine a PIM occurrence position by using the delay time and the size of the PIM signal.
Abstract:
An exemplary embodiment of the present information discloses a base station which transmits a discovery reference signal (DRS) in an unlicensed band, including: a transmission control unit which sets different timings to transmit the DRS for each of a plurality of channels; and a communication unit which transmits the DRS to the outside through the plurality of channels based on the set timing.
Abstract:
Provided are a data frame structure of a wireless communication system, which follows a sharing protocol which may be operated to coexist with a system that operates in an unlicensed spectrum, such as a WiFi system, and the like in the wireless communication system using a licensed spectrum such as an LTE system and an operation method of the system, and a terminal and a device of a base station for the operation.
Abstract:
Disclosed is a radar detection assistant apparatus for increasing detection accuracy when detecting an object using a radar detection device. The radar detection assistant apparatus includes a radar signal receiver for adjusting a radar candidate signal received through a reception antenna to a predetermined magnitude and filtering out a signal other than the radar candidate signal, a radar signal analyzer for receiving the radar candidate signal from the radar signal receiver and determining whether or not the radar candidate signal is a preset radar signal, a radar signal production controller for generating a control signal for an assistant apparatus production signal or an assistant apparatus reproduction signal on the basis of at least one of pieces of information on a type, a bandwidth, and a period of the radar candidate signal received from the radar signal analyzer, and a radar signal producer.
Abstract:
An operation method performed by an apparatus for detecting multiple targets may comprise transmitting first signals using Mt transmit antennas included in the apparatus; receiving the first signals reflected by the multiple targets through Mr receive antennas included in the apparatus; generating a first function for estimating a velocity and an azimuth of each of the multiple targets using the first signals and the reflected first signals; estimating a velocity and an azimuth that maximize a result of the first function as a velocity and an azimuth of a first target closest to the apparatus among the multiple targets; generating a second function by cancelling interference caused by the first target from the first function; and estimating a velocity and an azimuth that maximize a result of the second function as a velocity and an azimuth of a second target among the multiple targets.
Abstract:
The present invention relates to a device and method for allocating a coexistence resource in an unlicensed band. The device according to the present invention comprises: a frame configuration unit for configuring a subframe in which data and a reference signal for a channel in an unlicensed band are allocated, and allocating a part of the symbols of the subframe as a coexistence resource; a signal detection unit for detecting a signal of another LTE system or Wi-Fi system during a transmission idle period where the coexistence resource is allocated; and a transmission processing unit which, when the signal of another system is detected during the transmission idle period, does not occupy a resource for the next subframe, and when the occupation of the coexistence resource by the another system has ended, occupies the resource for the next subframe.
Abstract:
The present invention relates to a method for transmitting uplink data in a spectrum sharing wireless communication system wherein, in order to enhance uplink transmission efficiency in an LTE-U service, clear channel assessment (CCA) is performed on a user terminal so as to consider the hidden node problem, and channel occupation based on an uplink signal of another terminal is considered, wherein applied are: a method for generating and transmitting a random backoff counter value at a base station so that all terminals can equally use a channel connection parameter needed for transmitting an uplink subframe in an unlicensed band; and a downlink controlling method for scheduling an uplink multi-subframe.